Lack of Threshold for Anisotonic Cell Volume Regulation

Lack of Threshold for Anisotonic Cell Volume Regulation Most cells possess mechanisms that are able to detect cellular volume shifts and to signal the initiation of appropriate volume regulatory responses. However, the identity and characteristics of the detecting mechanism remain obscure. In this study, we explored the influence of hypertonic and hypotonic challenges of varying magnitude on the characteristics of the ensuing regulatory volume increase (RVI) and regulatory volume decrease (RVD) of cultured bovine corneal endothelial cells (CBCECs). The main question we asked was whether a threshold of stimulation existed that would unleash a regulatory response. CBCECs (passage 1–3) were seeded on rectangular glass coverslips and grown for 1–2 days. We used a procedure based on detection of light scattering to monitor the transient volume changes of such plated cells when subjected to osmotic challenge. The osmometric responses were asymmetric: cells shrank faster than they swelled (by a factor of 3). Complete volume regulatory responses took 10–12 min. Bumetanide (50 μM) resulted in incomplete (50%) RVI. We found no threshold as the cells examined responded to hypertonic and hypotonic stimuli as low as 1%. There was some gradation as stimuli of <4% resulted in incomplete volume regulation. The degree of activation of the volume responses grew as an exponential buildup with the strength of the anisotonic challenge. We discuss how our observations are consistent with volume sensing mechanisms based on both ionic strength and the cytoskeleton. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Lack of Threshold for Anisotonic Cell Volume Regulation

Loading next page...
 
/lp/springer_journal/lack-of-threshold-for-anisotonic-cell-volume-regulation-0Obi9tHP6f
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0002-9
Publisher site
See Article on Publisher Site

Abstract

Most cells possess mechanisms that are able to detect cellular volume shifts and to signal the initiation of appropriate volume regulatory responses. However, the identity and characteristics of the detecting mechanism remain obscure. In this study, we explored the influence of hypertonic and hypotonic challenges of varying magnitude on the characteristics of the ensuing regulatory volume increase (RVI) and regulatory volume decrease (RVD) of cultured bovine corneal endothelial cells (CBCECs). The main question we asked was whether a threshold of stimulation existed that would unleash a regulatory response. CBCECs (passage 1–3) were seeded on rectangular glass coverslips and grown for 1–2 days. We used a procedure based on detection of light scattering to monitor the transient volume changes of such plated cells when subjected to osmotic challenge. The osmometric responses were asymmetric: cells shrank faster than they swelled (by a factor of 3). Complete volume regulatory responses took 10–12 min. Bumetanide (50 μM) resulted in incomplete (50%) RVI. We found no threshold as the cells examined responded to hypertonic and hypotonic stimuli as low as 1%. There was some gradation as stimuli of <4% resulted in incomplete volume regulation. The degree of activation of the volume responses grew as an exponential buildup with the strength of the anisotonic challenge. We discuss how our observations are consistent with volume sensing mechanisms based on both ionic strength and the cytoskeleton.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 18, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off