Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize

Lack of repeatable differential expression patterns between MON810 and comparable commercial... The introduction of genetically modified organisms (GMO) in many countries follows strict regulations to assure that only products that have been safety tested in relation to human health and the environment are marketed. Thus, GMOs must be authorized before use. By complementing more targeted approaches, profiling methods can assess possible unintended effects of transformation. We used microarrays to compare the transcriptome profiles of widely commercialized maize MON810 varieties and their non-GM near-isogenic counterparts. The expression profiles of MON810 seedlings are more similar to those of their corresponding near-isogenic varieties than are the profiles of other lines produced by conventional breeding. However, differential expression of ∼1.7 and ∼0.1% of transcripts was identified in two variety pairs (AristisBt/Aristis and PR33P67/PR33P66) that had similar cryIA(b) mRNA levels, demonstrating that commercial varieties of the same event have different similarity levels to their near-isogenic counterparts without the transgene (note that these two pairs also show phenotypic differences). In the tissues, developmental stage and varieties analyzed, we could not identify any gene differentially expressed in all variety-pairs. However, a small set of sequences were differentially expressed in various pairs. Their relation to the transgenesis was not proven, although this is likely to be modulated by the genetic background of each variety. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize

Loading next page...
 
/lp/springer_journal/lack-of-repeatable-differential-expression-patterns-between-mon810-and-9AZRY0fpfx
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9355-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial