Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse models

Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse... Prader–Willi syndrome (PWS) is a neurobehavioral disorder caused by the lack of paternal expression of imprinted genes in the human chromosome region 15q11–13. Recent studies of rare human translocation patients narrowed the PWS critical genes to a 121-kb region containing PWCR1/HBII-85 and HBII-438 snoRNA genes. The existing mouse models of PWS that lack the expression of multiple genes, including Snrpn, Ube3a, and many intronic snoRNA genes, are characterized by 80%–100% neonatal lethality. To define the candidate region for PWS-like phenotypes in mice, we analyzed the expression of several genetic elements in mice carrying the large radiation-induced p 30PUb deletion that includes the p locus. Mice having inherited this deletion from either parent develop normally into adulthood. By Northern blot and RT-PCR assays of brain tissue, we found that Pwcr1/MBII-85 snoRNAs are expressed normally, while MBII-52 snoRNAs are not expressed when the deletion is paternally inherited. Mapping of the distal deletion breakpoint indicated that the p 30PUb deletion includes the entire MBII-52 snoRNA gene cluster and three previously unmapped EST sequences. The lack of expression of these elements in mice with a paternal p 30PUb deletion indicates that they are not critical for the neonatal lethality observed in PWS mouse models. In addition, we identified MBII-436, the mouse homolog of the HBII-436 snoRNA, confirmed its imprinting status, and mapped it outside of the p 30PUb deletion. Taking together all available data, we conclude that the lack of Pwcr1/MBII-85 snoRNA expression is the most likely cause for the neonatal lethality in PWS model mice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse models

Loading next page...
 
/lp/springer_journal/lack-of-pwcr1-mbii-85-snorna-is-critical-for-neonatal-lethality-in-z2SjXhHG07
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-2460-2
Publisher site
See Article on Publisher Site

Abstract

Prader–Willi syndrome (PWS) is a neurobehavioral disorder caused by the lack of paternal expression of imprinted genes in the human chromosome region 15q11–13. Recent studies of rare human translocation patients narrowed the PWS critical genes to a 121-kb region containing PWCR1/HBII-85 and HBII-438 snoRNA genes. The existing mouse models of PWS that lack the expression of multiple genes, including Snrpn, Ube3a, and many intronic snoRNA genes, are characterized by 80%–100% neonatal lethality. To define the candidate region for PWS-like phenotypes in mice, we analyzed the expression of several genetic elements in mice carrying the large radiation-induced p 30PUb deletion that includes the p locus. Mice having inherited this deletion from either parent develop normally into adulthood. By Northern blot and RT-PCR assays of brain tissue, we found that Pwcr1/MBII-85 snoRNAs are expressed normally, while MBII-52 snoRNAs are not expressed when the deletion is paternally inherited. Mapping of the distal deletion breakpoint indicated that the p 30PUb deletion includes the entire MBII-52 snoRNA gene cluster and three previously unmapped EST sequences. The lack of expression of these elements in mice with a paternal p 30PUb deletion indicates that they are not critical for the neonatal lethality observed in PWS mouse models. In addition, we identified MBII-436, the mouse homolog of the HBII-436 snoRNA, confirmed its imprinting status, and mapped it outside of the p 30PUb deletion. Taking together all available data, we conclude that the lack of Pwcr1/MBII-85 snoRNA expression is the most likely cause for the neonatal lethality in PWS model mice.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off