Kriging regression of PIV data using a local error estimate

Kriging regression of PIV data using a local error estimate The objective of the method described in this work is to provide an improved reconstruction of an original flow field from experimental velocity data obtained with particle image velocimetry (PIV) technique, by incorporating the local accuracy of the PIV data. The postprocessing method we propose is Kriging regression using a local error estimate (Kriging LE). In Kriging LE, each velocity vector must be accompanied by an estimated measurement uncertainty. The performance of Kriging LE is first tested on synthetically generated PIV images of a two-dimensional flow of four counter-rotating vortices with various seeding and illumination conditions. Kriging LE is found to increase the accuracy of interpolation to a finer grid dramatically at severe reflection and low seeding conditions. We subsequently apply Kriging LE for spatial regression of stereo-PIV data to reconstruct the three-dimensional wake of a flapping-wing micro air vehicle. By qualitatively comparing the large-scale vortical structures, we show that Kriging LE performs better than cubic spline interpolation. By quantitatively comparing the interpolated vorticity to unused measurement data at intermediate planes, we show that Kriging LE outperforms conventional Kriging as well as cubic spline interpolation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Kriging regression of PIV data using a local error estimate

Loading next page...
 
/lp/springer_journal/kriging-regression-of-piv-data-using-a-local-error-estimate-73xrmZpVUo
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1650-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial