Kinship, dispersal and hantavirus transmission in bank and common voles

Kinship, dispersal and hantavirus transmission in bank and common voles Hantaviruses are among the main emerging infectious agents in Europe. Their mode of transmission in natura is still not well known. In particular, social features and behaviours could be crucial for understanding the persistence and the spread of hantaviruses in rodent populations. Here, we investigated the importance of kinclustering and dispersal in hantavirus transmission by combining a fine-scale spatiotemporal survey (4 km 2 ) and a population genetics approach. Two specific host-hantavirus systems were identified and monitored: the bank vole Myodes , earlier Clethrionomys glareolus ––Puumala virus and the common vole Microtus arvalis —Tula virus. Sex, age and landscape characteristics significantly influenced the spatial distribution of infections in voles. The absence of temporal stability in the spatial distributions of viruses suggested that dispersal is likely to play a role in virus propagation. Analysing vole kinship from microsatellite markers, we found that infected voles were more closely related to each other than non-infected ones. Winter kin-clustering, shared colonies within matrilineages or delayed dispersal could explain this pattern. These two last results hold, whatever the host-hantavirus system considered. This supports the roles of relatedness and dispersal as general features for hantavirus transmission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Kinship, dispersal and hantavirus transmission in bank and common voles

Loading next page...
 
/lp/springer_journal/kinship-dispersal-and-hantavirus-transmission-in-bank-and-common-voles-uf21URpIKP
Publisher
Springer Vienna
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-007-0005-6
Publisher site
See Article on Publisher Site

Abstract

Hantaviruses are among the main emerging infectious agents in Europe. Their mode of transmission in natura is still not well known. In particular, social features and behaviours could be crucial for understanding the persistence and the spread of hantaviruses in rodent populations. Here, we investigated the importance of kinclustering and dispersal in hantavirus transmission by combining a fine-scale spatiotemporal survey (4 km 2 ) and a population genetics approach. Two specific host-hantavirus systems were identified and monitored: the bank vole Myodes , earlier Clethrionomys glareolus ––Puumala virus and the common vole Microtus arvalis —Tula virus. Sex, age and landscape characteristics significantly influenced the spatial distribution of infections in voles. The absence of temporal stability in the spatial distributions of viruses suggested that dispersal is likely to play a role in virus propagation. Analysing vole kinship from microsatellite markers, we found that infected voles were more closely related to each other than non-infected ones. Winter kin-clustering, shared colonies within matrilineages or delayed dispersal could explain this pattern. These two last results hold, whatever the host-hantavirus system considered. This supports the roles of relatedness and dispersal as general features for hantavirus transmission.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off