Kinetics of vacancy annealing upon time-linear heating applied to dilatometry

Kinetics of vacancy annealing upon time-linear heating applied to dilatometry A kinetic model for the diffusion-controlled annealing of excess vacancies under the experimentally relevant, non-isothermal condition of time-linear heating is presented and applied to dilatometry. The evolution of the vacancy concentration with time is quantitatively analyzed, considering as ideal sinks either dislocations or grain boundaries of spherical- or cylindrical-shaped crystallites. The validity of the model is tested using dilatometry data that were obtained for ultrafine-grained Ni prepared by high-pressure torsion. The entire two-stage annealing curve of the dilatometric length change can be analyzed by combining the present kinetic model of vacancy annealing at grain boundaries with established non-isothermal kinetics of recrystallization. Journal of Materials Science Springer Journals

Kinetics of vacancy annealing upon time-linear heating applied to dilatometry

Loading next page...
Springer US
Copyright © 2017 by The Author(s)
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial