Kinetics of fullerene triplet states

Kinetics of fullerene triplet states Studies are described whose goal is a quantitative kinetic description of fullerene triplet relaxation. The room-temperature intrinsic lifetimes of solution phase T1 C60 and C70 differ substantially, with values in toluene of 143 μs and 12 ms, respectively. These decay rates exhibit only weak temperature dependence near room temperature. The intrinsic lifetime of T1 C60 has a simple dependence on vibrational energy content up to 1000 K. Efficient triplet-triplet annihilation occurs in C60 and C70 solutions at ca. 50% of the diffusion-limited rate. In mixed solutions, rapid reversible triplet energy exchange was observed between C60 and C70, and between C60 and (CH3)2 C60. A new method for measuring relative triplet enthalpies and entropies in such mixtures has also been applied. Complex kinetics has been uncovered in C70 solutions and modeled by reversible formation of shortlived triplet excimers, accounting for the efficient self-quenching. C60 self-quenching has been found to be highly temperature dependent, but the mechanism remains unresolved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Kinetics of fullerene triplet states

Loading next page...
 
/lp/springer_journal/kinetics-of-fullerene-triplet-states-MZ3VNXiP0i
Publisher
Springer Netherlands
Copyright
Copyright © 1997 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856797X00178
Publisher site
See Article on Publisher Site

Abstract

Studies are described whose goal is a quantitative kinetic description of fullerene triplet relaxation. The room-temperature intrinsic lifetimes of solution phase T1 C60 and C70 differ substantially, with values in toluene of 143 μs and 12 ms, respectively. These decay rates exhibit only weak temperature dependence near room temperature. The intrinsic lifetime of T1 C60 has a simple dependence on vibrational energy content up to 1000 K. Efficient triplet-triplet annihilation occurs in C60 and C70 solutions at ca. 50% of the diffusion-limited rate. In mixed solutions, rapid reversible triplet energy exchange was observed between C60 and C70, and between C60 and (CH3)2 C60. A new method for measuring relative triplet enthalpies and entropies in such mixtures has also been applied. Complex kinetics has been uncovered in C70 solutions and modeled by reversible formation of shortlived triplet excimers, accounting for the efficient self-quenching. C60 self-quenching has been found to be highly temperature dependent, but the mechanism remains unresolved.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off