Kinetics and mechanism of the 1,3-dipolar cycloaddition of nitrilimine with thione-containing dipolarophile: a detailed DFT study

Kinetics and mechanism of the 1,3-dipolar cycloaddition of nitrilimine with thione-containing... The 1,3-dipolar cycloadditions are extensively used for the preparation of five-membered heterocycles. A mechanism consisting of two pathways was proposed for production of two regioisomers of the 1,3-dipolar cycloaddition of the nitrilimine and a thione-containing dipolarophile. Here, we have investigated the kinetics and mechanism of this reaction using density functional theory. Two possible mechanisms of A and B have been investigated in which Cl− is present in the structure of the nitrilimine reactant in the case of mechanism A, while it is absent in the case of mechanism B. Mechanism A, involving Cl−, has higher barrier energy than mechanism B, and so is rejected. Mechanism B involves two pathways, I and II, which lead to two regioisomers with different percentages in the products. Both of the pathways are one-step. Pathway II involves the attack of the nitrogen atom of the nitrilimine on the carbon atom of the C=S group of the dipolarophile. The product of pathway II is kinetically and thermodynamically a more favorable product than its regioisomer produced in the other pathway. The obtained results are in agreement with the experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Kinetics and mechanism of the 1,3-dipolar cycloaddition of nitrilimine with thione-containing dipolarophile: a detailed DFT study

Loading next page...
 
/lp/springer_journal/kinetics-and-mechanism-of-the-1-3-dipolar-cycloaddition-of-nitrilimine-fyKFZKtc20
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2449-3
Publisher site
See Article on Publisher Site

Abstract

The 1,3-dipolar cycloadditions are extensively used for the preparation of five-membered heterocycles. A mechanism consisting of two pathways was proposed for production of two regioisomers of the 1,3-dipolar cycloaddition of the nitrilimine and a thione-containing dipolarophile. Here, we have investigated the kinetics and mechanism of this reaction using density functional theory. Two possible mechanisms of A and B have been investigated in which Cl− is present in the structure of the nitrilimine reactant in the case of mechanism A, while it is absent in the case of mechanism B. Mechanism A, involving Cl−, has higher barrier energy than mechanism B, and so is rejected. Mechanism B involves two pathways, I and II, which lead to two regioisomers with different percentages in the products. Both of the pathways are one-step. Pathway II involves the attack of the nitrogen atom of the nitrilimine on the carbon atom of the C=S group of the dipolarophile. The product of pathway II is kinetically and thermodynamically a more favorable product than its regioisomer produced in the other pathway. The obtained results are in agreement with the experimental results.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off