Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide: linear and nonlinear analysis of isotherm and kinetic parameters

Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide:... Nano crystalline iron oxide was used as an adsorbent for removal of chromium from aqueous solutions. Linear and non-linear equations were applied to model the kinetic and isotherm data. Non-linear analysis included error analysis using the Solver addin of Microsoft Excel and Origin. Error analysis methods fitted the data better than Origin for determination of isotherm and kinetic parameters. Non-linear analysis suggests adsorption of chromium on nano crystalline iron oxide followed Langmuir isotherm. The maximum adsorption capacity of the adsorbent was found to be 11.18 mg/g. The system followed a pseudo second order model on the basis of linear and non-linear data. The Langmuir constant and partition coefficient methods were used to determine the thermodynamic parameters. Both methods suggested that the adsorption of chromium by nanocrystalline iron oxide is spontaneous and exothermic (−47.26 kJ/mol). The free energy values varied from −24.23 to −27.22 kJ/mol, and the process of removal progressed with a decrease in entropy (0.9256 kJ/mol). Thermodynamic parameters predicted by the linear Langmuir constant method suggested that the system is endothermic (9.65 kJ/mol), spontaneous, and occurs with an increase in entropy (0.1142 kJ/mol). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide: linear and nonlinear analysis of isotherm and kinetic parameters

Loading next page...
 
/lp/springer_journal/kinetics-and-isotherm-study-on-adsorption-of-chromium-on-nano-lj3G0CEHrH
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2523-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial