Kinetically Different Populations of O-Pyromellityl-Gramicidin Channels Induced by Poly-L-Lysines in Lipid Bilayers

Kinetically Different Populations of O-Pyromellityl-Gramicidin Channels Induced by Poly-L-Lysines... Clustering of membrane proteins, in particular of ion channels, plays an important role in their functioning. To further elucidate the mechanism of such ion channel activity regulation, we performed experiments with a model system comprising the negatively-charged gramicidin analog, O-pyromellitylgramicidin (OPg) that forms ion channels in bilayer lipid membrane (BLM), and polycations. The effect of polylysines on the kinetics of OPg channels in BLM was studied by the method of sensitized photoinactivation. As found in our previous work, the interaction of polylysine with OPg led to the deceleration of the OPg photoinactivation kinetics, i.e., to the increase in the characteristic time of OPg photoinactivation. It was shown here that in a certain range of polylysine concentrations the photoinactivation kinetics displayed systematic deviations from a monoexponential curve and was well described by a sum of two exponentials. The deviations from the monoexponential approximation were more pronounced with polylysines having a lower degree of polymerization. These deviations increased also upon the elevation of the ionic strength of the bathing solution and the addition of calcium ions. A theoretical model is presented that relates the OPg photoinactivation kinetics at different concentration ratios of OPg and polylysine to the distribution of OPg molecules among OPg-polylysine clusters of different stoichiometry. This model is shown to explain qualitatively the experimental results, although the quantitative description of the whole body of evidence requires further development, assuming that the interaction of polylysine with OPg causes segregation of membrane domains enriched in OPg channels. The single-channel data, which revealed the insensitivity of the single-channel lifetime of OPg to the addition of polylysine, are in good agreement with the theoretical model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Kinetically Different Populations of O-Pyromellityl-Gramicidin Channels Induced by Poly-L-Lysines in Lipid Bilayers

Loading next page...
 
/lp/springer_journal/kinetically-different-populations-of-o-pyromellityl-gramicidin-y4KwhGhLNB
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1007-7
Publisher site
See Article on Publisher Site

Abstract

Clustering of membrane proteins, in particular of ion channels, plays an important role in their functioning. To further elucidate the mechanism of such ion channel activity regulation, we performed experiments with a model system comprising the negatively-charged gramicidin analog, O-pyromellitylgramicidin (OPg) that forms ion channels in bilayer lipid membrane (BLM), and polycations. The effect of polylysines on the kinetics of OPg channels in BLM was studied by the method of sensitized photoinactivation. As found in our previous work, the interaction of polylysine with OPg led to the deceleration of the OPg photoinactivation kinetics, i.e., to the increase in the characteristic time of OPg photoinactivation. It was shown here that in a certain range of polylysine concentrations the photoinactivation kinetics displayed systematic deviations from a monoexponential curve and was well described by a sum of two exponentials. The deviations from the monoexponential approximation were more pronounced with polylysines having a lower degree of polymerization. These deviations increased also upon the elevation of the ionic strength of the bathing solution and the addition of calcium ions. A theoretical model is presented that relates the OPg photoinactivation kinetics at different concentration ratios of OPg and polylysine to the distribution of OPg molecules among OPg-polylysine clusters of different stoichiometry. This model is shown to explain qualitatively the experimental results, although the quantitative description of the whole body of evidence requires further development, assuming that the interaction of polylysine with OPg causes segregation of membrane domains enriched in OPg channels. The single-channel data, which revealed the insensitivity of the single-channel lifetime of OPg to the addition of polylysine, are in good agreement with the theoretical model.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off