Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its Beneficiation

Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its... In a novel method of beneficiation of low-grade chromite ore, nuggets, 25 mm in diameter and 10 mm long, made of chromite ore and coke fines, are subjected to partial reduction. A significant degree of reduction of iron oxide is observed at temperatures of 1373–1523 K up to a reduction time of 240 min, and subsequent magnetic separation is found to enrich the low-grade chromite ore. In the kinetic studies performed on the partial reduction of chromite ore, nucleation and growth model NG1 (Avrami–Erofeev eq.; n = 1) is found to be the rate-controlling regime. However, during the early phase of the reaction, particularly at lower temperature up to 1423 K, the nucleation and growth model NG2 (Avrami–Erofeev eq., n = 2) predicts the reduction behaviour better. At higher conversion, particularly at a higher temperature of 1523 K, diffusion plays a significant role. The average apparent activation energy of reaction, based on the NG1 model over the entire reaction period, is estimated to be 38.52 kJ/mol. Keywords Reduction · Chromite · Kinetic study · Rate controlling regime 1 Introduction The reduction of chromite ore is influenced by factors like its type, the reducing agent and experimental conditions, The chromite http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal for Science and Engineering Springer Journals

Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its Beneficiation

Loading next page...
 
/lp/springer_journal/kinetic-studies-on-the-reduction-of-iron-oxides-in-low-grade-chromite-0qTuHQ0uVi
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by King Fahd University of Petroleum & Minerals
Subject
Engineering; Engineering, general; Science, Humanities and Social Sciences, multidisciplinary
ISSN
1319-8025
eISSN
2191-4281
D.O.I.
10.1007/s13369-018-3324-x
Publisher site
See Article on Publisher Site

Abstract

In a novel method of beneficiation of low-grade chromite ore, nuggets, 25 mm in diameter and 10 mm long, made of chromite ore and coke fines, are subjected to partial reduction. A significant degree of reduction of iron oxide is observed at temperatures of 1373–1523 K up to a reduction time of 240 min, and subsequent magnetic separation is found to enrich the low-grade chromite ore. In the kinetic studies performed on the partial reduction of chromite ore, nucleation and growth model NG1 (Avrami–Erofeev eq.; n = 1) is found to be the rate-controlling regime. However, during the early phase of the reaction, particularly at lower temperature up to 1423 K, the nucleation and growth model NG2 (Avrami–Erofeev eq., n = 2) predicts the reduction behaviour better. At higher conversion, particularly at a higher temperature of 1523 K, diffusion plays a significant role. The average apparent activation energy of reaction, based on the NG1 model over the entire reaction period, is estimated to be 38.52 kJ/mol. Keywords Reduction · Chromite · Kinetic study · Rate controlling regime 1 Introduction The reduction of chromite ore is influenced by factors like its type, the reducing agent and experimental conditions, The chromite

Journal

Arabian Journal for Science and EngineeringSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off