Kinetic modeling for phenol degradation using photo-impinging streams reactor

Kinetic modeling for phenol degradation using photo-impinging streams reactor In the present study, a novel kinetic model has been proposed for photocatalytic degradation of wastewater. In the first step, statistical experimental designs have been used to optimize the process of phenol degradation in a photo-impinging streams reactor. The crucial parameters, namely phenol concentration, catalyst loading, pH, and slurry flow rate, were selected for process optimization, applying central composite design. The analysis results indicated that interactions between catalyst loading and pH significantly affect phenol degradation. The predicted data showed that the maximum removal efficiency of phenol (99 %) could be obtained under the optimum operating conditions (phenol concentration = 50 mg l−1, catalyst loading = 2.1 g l−1, pH 6.2, and slurry flow rate = 550 ml min−1). These predicted values were then verified by certain validating experiments. Residence time distribution (RTD) of the slurry phase within the reactor was then measured using the impulse tracer method. A number of different assumptions were made, i.e., continuous stirred tank reactors (CSTRs) in series model and gamma distribution model with bypass (GDB). A comparison made between the sum of the square errors for experimental and predicted RTD values in case of each flow model revealed that both CSTRs in series model and GDB were proper descriptions for reactor behavior. The CSTRs in series model and RTD data were applied in conjunction with the phenol degradation kinetic model to predict the coefficients of the reaction rate. Research on Chemical Intermediates Springer Journals

Kinetic modeling for phenol degradation using photo-impinging streams reactor

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial