Key-leakage evaluation of authentication in quantum key distribution with finite resources

Key-leakage evaluation of authentication in quantum key distribution with finite resources Partial information leakages of generation key undoubtedly influence the security of practical Quantum Key Distribution (QKD) system. In this paper, based on finite-key analysis and deep investigation on privacy amplification, we present a method for characterizing information leakages gained by adversary in each authentication round and therefore take the theory derived by Cederlöf and Larsson (IEEE Trans Inf Theory 54:1735–1741, 2008) into practical case. As the authentication key is fed from one round of generation keys to the next except the first round, by considering its security weakness due to information leakages and finite size effect, we further propose a universal formula for calculating the lifetime of initial authentication key used in QKD with finite resources. Numerical simulations indicate that our bound for estimating information leakages strictly characterizes the stability of practical QKD against information-leakage-based attacks, and our calculation formula in terms of lifetime can precisely evaluate the usage time of initial authentication key. Our work provides a practical solution for evaluating authentication security of QKD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Key-leakage evaluation of authentication in quantum key distribution with finite resources

Loading next page...
 
/lp/springer_journal/key-leakage-evaluation-of-authentication-in-quantum-key-distribution-0unJMCK9eP
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0703-9
Publisher site
See Article on Publisher Site

Abstract

Partial information leakages of generation key undoubtedly influence the security of practical Quantum Key Distribution (QKD) system. In this paper, based on finite-key analysis and deep investigation on privacy amplification, we present a method for characterizing information leakages gained by adversary in each authentication round and therefore take the theory derived by Cederlöf and Larsson (IEEE Trans Inf Theory 54:1735–1741, 2008) into practical case. As the authentication key is fed from one round of generation keys to the next except the first round, by considering its security weakness due to information leakages and finite size effect, we further propose a universal formula for calculating the lifetime of initial authentication key used in QKD with finite resources. Numerical simulations indicate that our bound for estimating information leakages strictly characterizes the stability of practical QKD against information-leakage-based attacks, and our calculation formula in terms of lifetime can precisely evaluate the usage time of initial authentication key. Our work provides a practical solution for evaluating authentication security of QKD.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 17, 2013

References

  • Security aspects of the authentication used in quantum cryptography
    Cederlöf, J; Larsson, J-Ä
  • The operational meaning of min- and max-entropy
    König, R; Renner, R; Schaffner, C

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off