Kernel-based support vector machines for automated health status assessment in monitoring sensor data

Kernel-based support vector machines for automated health status assessment in monitoring sensor... This paper presents a novel algorithm to assess the health status in monitoring sensor data using a kernel-based support vector machine (SVM) approach. Today, accurate fault prediction is a key issue raised by maintenance. In particular, automatically modelling the normal behaviour from condition monitoring data is probably one of the most challenging problems, specially when there is limited information of real faults. To overcome this difficulty, a data-driven learning framework based on nonparametric density estimation for outlier detection and ν-SVM for normality modelling, with optimal bandwidth selection, is proposed. A health score based on the log-normalisation of the distance to the separating hyperplane is also provided. Experimental results obtained when analysing the propagation of a critical fault over time in a marine diesel engine demonstrate the validity of the algorithm. The predictions of normality models learned were compared to those of the k-nearest neighbours (kNN) method. Low false positive rates on healthy data and improved prediction capacities are achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Kernel-based support vector machines for automated health status assessment in monitoring sensor data

Loading next page...
 
/lp/springer_journal/kernel-based-support-vector-machines-for-automated-health-status-0JA1tgxd5X
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1204-2
Publisher site
See Article on Publisher Site

Abstract

This paper presents a novel algorithm to assess the health status in monitoring sensor data using a kernel-based support vector machine (SVM) approach. Today, accurate fault prediction is a key issue raised by maintenance. In particular, automatically modelling the normal behaviour from condition monitoring data is probably one of the most challenging problems, specially when there is limited information of real faults. To overcome this difficulty, a data-driven learning framework based on nonparametric density estimation for outlier detection and ν-SVM for normality modelling, with optimal bandwidth selection, is proposed. A health score based on the log-normalisation of the distance to the separating hyperplane is also provided. Experimental results obtained when analysing the propagation of a critical fault over time in a marine diesel engine demonstrate the validity of the algorithm. The predictions of normality models learned were compared to those of the k-nearest neighbours (kNN) method. Low false positive rates on healthy data and improved prediction capacities are achieved.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Oct 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off