KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells

KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit... The Shaker potassium channels are tetrameric proteins formed by the assembly of four α-subunits. The oligomerization can occur among both homo- and hetero-α-subunits. KDC1 is a carrot Shaker-like potassium channel expressed in the epidermis of plantlet roots and the protoderm of somatic embryos. KDC1 was previously characterised electrophysiologically in CHO and Xenopus oocytes cells, but the experiments performed in these systems did not provide conclusive evidence that KDC1 forms a functional homomeric channel in plant cells. In this report, we show that KDC1 localizes to the plasma membrane of root cells in transgenic tobacco plants transformed with a KDC1∷GFP fusion construct. In tobacco mesophyll protoplasts, transiently transformed with KDC1∷GFP, KDC1 was present on the endomembrane and the protoplasts did not show any inward potassium current, as demonstrated by patch-clamp experiments. The co-expression of KDC1∷GFP with the Arabidopsis thaliana potassium channel AKT1 in tobacco mesophyll protoplasts has the effect of shifting KDC1 localization from endomembranes to the plasma membrane. Patch-clamp experiments performed on tobacco mesophyll protoplasts expressing AKT1 alone or in combination with KDC1∷GFP showed voltage-activated inward potassium currents with different properties. In particular, the addition of Zn2+ to the bath solution induced a clear decrease of the potassium currents in protoplasts transformed with AKT1 alone, whereas a current potentiation (indicative of KDC1 presence) was observed in protoplasts co-transformed with AKT1 + KDC1∷GFP. Split-Ubiquitin assay experiments performed in yeast cells confirmed the interaction between AKT1 and KDC1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells

Loading next page...
 
/lp/springer_journal/kdc1-a-carrot-shaker-like-potassium-channel-reveals-its-role-as-a-6yr60U0pFL
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9252-x
Publisher site
See Article on Publisher Site

Abstract

The Shaker potassium channels are tetrameric proteins formed by the assembly of four α-subunits. The oligomerization can occur among both homo- and hetero-α-subunits. KDC1 is a carrot Shaker-like potassium channel expressed in the epidermis of plantlet roots and the protoderm of somatic embryos. KDC1 was previously characterised electrophysiologically in CHO and Xenopus oocytes cells, but the experiments performed in these systems did not provide conclusive evidence that KDC1 forms a functional homomeric channel in plant cells. In this report, we show that KDC1 localizes to the plasma membrane of root cells in transgenic tobacco plants transformed with a KDC1∷GFP fusion construct. In tobacco mesophyll protoplasts, transiently transformed with KDC1∷GFP, KDC1 was present on the endomembrane and the protoplasts did not show any inward potassium current, as demonstrated by patch-clamp experiments. The co-expression of KDC1∷GFP with the Arabidopsis thaliana potassium channel AKT1 in tobacco mesophyll protoplasts has the effect of shifting KDC1 localization from endomembranes to the plasma membrane. Patch-clamp experiments performed on tobacco mesophyll protoplasts expressing AKT1 alone or in combination with KDC1∷GFP showed voltage-activated inward potassium currents with different properties. In particular, the addition of Zn2+ to the bath solution induced a clear decrease of the potassium currents in protoplasts transformed with AKT1 alone, whereas a current potentiation (indicative of KDC1 presence) was observed in protoplasts co-transformed with AKT1 + KDC1∷GFP. Split-Ubiquitin assay experiments performed in yeast cells confirmed the interaction between AKT1 and KDC1.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 23, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off