K+ Secretion in Strial Marginal Cells is Stimulated via β1-Adrenergic Receptors but not via β2-Adrenergic or Vasopressin Receptors

K+ Secretion in Strial Marginal Cells is Stimulated via β1-Adrenergic Receptors but not via... Pharmacologic tools were used to identify receptors in functional studies by measuring either transepithelial current (I sc ) in strial marginal cells (SMC) or cAMP production in stria vascularis (SV). Further, receptors were identified in SV as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. Experiments were performed using tissues isolated from gerbils unless specified otherwise. I sc under control conditions was 1090 ± 21 μA/cm2 (n= 213) in gerbil SMC and 2001 ± 95 μA/cm2 (n= 6) in murine SMC. Direct stimulation of adenylate cyclase with 10-5 m forskolin but not with 10−5 m 1,9-dideoxy-forskolin resulted in an increase in the I sc by a factor of 1.14 ± 0.01 (n= 6). The vasopressin-receptor agonist 10−8 m Arg8-vasopressin had no significant effect on I sc in gerbil and murine SMC. The β-adrenergic agonists isoproterenol, norepinephrine and epinephrine stimulated I sc with an EC 50 of (6 ± 2) × 10−7 m (n= 28), (3 ± 1) × 10−6 m (n= 40) and (7 ± 2) × 10−6 m (n= 38), respectively. Isoproterenol stimulated cAMP production in SV with an EC 50 of (5 ± 2) × 10−7 m (n= 8). The β-antagonist 10−4 m propanolol completely inhibited 2 × 10−5 m isoproterenol-induced stimulation of I sc . The β-antagonists atenolol, ICI118551 and CGP20712A inhibited isoproterenol-induced stimulation of I sc with a K DB of 1 × 10−7 m (pK DB = 6.96 ± 0.15, n= 14), 1 × 10−7 m (pK DB = 7.01 ± 0.14, n= 15), 2 × 10−9 m (pK DB = 8.73 ± 0.13, n = 19), respectively. CGP20712A inhibited isoproterenol-induced cAMP production with a K DB of 1 × 10−10 m (pK DB = 9.94 ± 0.55, n= 9). RT-PCR of total RNA isolated from SV using primers specific for the β1-, β2- and β3-adrenergic receptors revealed products of the predicted sizes for the β1- and β2- but not the β3-adrenergic receptor. Sequence analysis confirmed that amplified cDNA fragments encoded gene-specific nucleotide sequences. These results demonstrate that K+ secretion in SMC is under the control of β1-adrenergic receptors but not β2-adrenergic or vasopressin-receptors and that the β1-subtype is the primary β-adrenergic receptor in SV although SV contains transcripts for both β1- and β2-adrenergic receptors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

K+ Secretion in Strial Marginal Cells is Stimulated via β1-Adrenergic Receptors but not via β2-Adrenergic or Vasopressin Receptors

Loading next page...
 
/lp/springer_journal/k-secretion-in-strial-marginal-cells-is-stimulated-via-1-adrenergic-V3xS8RNh09
Publisher
Springer Journals
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001067
Publisher site
See Article on Publisher Site

Abstract

Pharmacologic tools were used to identify receptors in functional studies by measuring either transepithelial current (I sc ) in strial marginal cells (SMC) or cAMP production in stria vascularis (SV). Further, receptors were identified in SV as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. Experiments were performed using tissues isolated from gerbils unless specified otherwise. I sc under control conditions was 1090 ± 21 μA/cm2 (n= 213) in gerbil SMC and 2001 ± 95 μA/cm2 (n= 6) in murine SMC. Direct stimulation of adenylate cyclase with 10-5 m forskolin but not with 10−5 m 1,9-dideoxy-forskolin resulted in an increase in the I sc by a factor of 1.14 ± 0.01 (n= 6). The vasopressin-receptor agonist 10−8 m Arg8-vasopressin had no significant effect on I sc in gerbil and murine SMC. The β-adrenergic agonists isoproterenol, norepinephrine and epinephrine stimulated I sc with an EC 50 of (6 ± 2) × 10−7 m (n= 28), (3 ± 1) × 10−6 m (n= 40) and (7 ± 2) × 10−6 m (n= 38), respectively. Isoproterenol stimulated cAMP production in SV with an EC 50 of (5 ± 2) × 10−7 m (n= 8). The β-antagonist 10−4 m propanolol completely inhibited 2 × 10−5 m isoproterenol-induced stimulation of I sc . The β-antagonists atenolol, ICI118551 and CGP20712A inhibited isoproterenol-induced stimulation of I sc with a K DB of 1 × 10−7 m (pK DB = 6.96 ± 0.15, n= 14), 1 × 10−7 m (pK DB = 7.01 ± 0.14, n= 15), 2 × 10−9 m (pK DB = 8.73 ± 0.13, n = 19), respectively. CGP20712A inhibited isoproterenol-induced cAMP production with a K DB of 1 × 10−10 m (pK DB = 9.94 ± 0.55, n= 9). RT-PCR of total RNA isolated from SV using primers specific for the β1-, β2- and β3-adrenergic receptors revealed products of the predicted sizes for the β1- and β2- but not the β3-adrenergic receptor. Sequence analysis confirmed that amplified cDNA fragments encoded gene-specific nucleotide sequences. These results demonstrate that K+ secretion in SMC is under the control of β1-adrenergic receptors but not β2-adrenergic or vasopressin-receptors and that the β1-subtype is the primary β-adrenergic receptor in SV although SV contains transcripts for both β1- and β2-adrenergic receptors.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off