K+ Channels of Squid Giant Axons Open by an Osmotic Stress in Hypertonic Solutions Containing Nonelectrolytes

K+ Channels of Squid Giant Axons Open by an Osmotic Stress in Hypertonic Solutions Containing... In hypertonic solutions made by adding nonelectrolytes, K+ channels of squid giant axons opened at usual asymmetrical K+ concentrations in two different time courses; an initial instantaneous activation (I IN) and a sigmoidal activation typical of a delayed rectifier K+ channel (I D). The current–voltage relation curve for I IN was fitted well with Goldman equation described with a periaxonal K+ concentration at the membrane potential above −10 mV. Using the activation–voltage curve obtained from tail currents, K+ channels for I IN are confirmed to activate at the membrane potential that is lower by 50 mV than those for I D. Both I IN and I D closed similarly at the holding potential below −100 mV. The logarithm of I IN/I D was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K+ channels representing I D were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I IN, which was explained by the mechanism that K+ channels for I D were first converted to those for I IN by the osmotic pressure and then blocked. So K+ channels for I IN were suggested to be derived from the delayed rectifier K+ channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K+ channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K+ channel pore. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

K+ Channels of Squid Giant Axons Open by an Osmotic Stress in Hypertonic Solutions Containing Nonelectrolytes

Loading next page...
 
/lp/springer_journal/k-channels-of-squid-giant-axons-open-by-an-osmotic-stress-in-SRZDBnvsR4
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9383-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial