Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein–Gordon Equation

Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein–Gordon Equation We consider a nonlinear Klein–Gordon equation with a quasilinear quadratic term. The Nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the evolution of the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the quasilinear Klein–Gordon equation. It is the purpose of this paper to present a method that allows one to prove error estimates in Sobolev norms between exact solutions of the quasilinear Klein–Gordon equation and the formal approximation obtained via the NLS equation. The paper contains the first validity proof of the NLS approximation of a nonlinear hyperbolic equation with a quasilinear quadratic term by error estimates in Sobolev spaces. We expect that the method developed in the present paper will allow an answer to the relevant question of the validity of the NLS approximation for other quasilinear hyperbolic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Communications in Mathematical Physics Springer Journals

Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein–Gordon Equation

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Physics; Theoretical, Mathematical and Computational Physics; Mathematical Physics; Quantum Physics; Complex Systems; Classical and Quantum Gravitation, Relativity Theory
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial