Access the full text.
Sign up today, get DeepDyve free for 14 days.
Cognitive radio is a novel approach to cope with spectrum scarcity, in which either a network or a wireless node changes its transmission or reception parameters to communicate efficiently. However, it is difficult to avoid the interference between licensed and unlicensed users in various scenarios. This paper analyzes the jointly optimized allocation of sensing time and power for a two-user, amplify-and-forward (AF) cognitive network developed by maximizing the average aggregate throughput of its secondary network. In particular, this paper discusses diverse cooperation ratios for different scenarios and a unique cooperation ratio in spite of scenario changes. The observations of experiment results indicate that the sensing duration is within a strict interval. The results show that the optimized sensing time is 14.111 ms and the aggregate throughput equals to 1.1451 bps/Hz which are tractable by sequential optimization. This result indicates that by adopting the fixed cooperation ratios, the achievable throughput of the system is decreased. The system innovatively creates multiple independent fading channels to achieve technological diversity among partners.
Annals of Telecommunications – Springer Journals
Published: Jan 26, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.