Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements

Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements In this paper, two schemes for joint remote preparation via linear optics elements are proposed. Firstly, we propose a scheme for joint remote preparation of an arbitrary two-photon state via linear-optical elements by using a five-qubit cluster state as the quantum channel. Then, the JRSP protocol of an arbitrary three-photon state via linear-optical elements, which was rarely considered in previous papers, is investigated. All the senders share the information of prepared state. The senders transform the quantum channel to the target quantum channel according to their information of prepared state, and the receiver can prepare the original state by performing corresponding operations on his entangled particles. Our scheme has advantage of transmitting less particles for joint remote preparing an arbitrary two-qubit state. Moreover, it is more convenience in application since it only requires linear-optical elements for joint remote preparation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements

Loading next page...
 
/lp/springer_journal/joint-remote-preparation-of-arbitrary-two-and-three-photon-state-with-GSFaCeljYl
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1424-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, two schemes for joint remote preparation via linear optics elements are proposed. Firstly, we propose a scheme for joint remote preparation of an arbitrary two-photon state via linear-optical elements by using a five-qubit cluster state as the quantum channel. Then, the JRSP protocol of an arbitrary three-photon state via linear-optical elements, which was rarely considered in previous papers, is investigated. All the senders share the information of prepared state. The senders transform the quantum channel to the target quantum channel according to their information of prepared state, and the receiver can prepare the original state by performing corresponding operations on his entangled particles. Our scheme has advantage of transmitting less particles for joint remote preparing an arbitrary two-qubit state. Moreover, it is more convenience in application since it only requires linear-optical elements for joint remote preparation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off