Joint optimization of delay and congestion in wavelength-routed optical networks using genetic algorithms

Joint optimization of delay and congestion in wavelength-routed optical networks using genetic... A new multipurpose genetic algorithm, based on Pareto optimality, is proposed to design logical topologies for wavelength-routed optical networks with the aim of minimizing both the congestion and the end-to-end delay. Simulation results show its efficiency when compared with other previously proposed algorithms, achieving in most cases optimal or near-optimal solutions, and in less time than other methods. Moreover, since the algorithm relies on Pareto optimality, not only does it obtain a single logical topology but a set of them, so that the network designer can easily select the most appropriate one according to the current network requirements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Joint optimization of delay and congestion in wavelength-routed optical networks using genetic algorithms

Loading next page...
 
/lp/springer_journal/joint-optimization-of-delay-and-congestion-in-wavelength-routed-kIrpMfdHXe
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0196-8
Publisher site
See Article on Publisher Site

Abstract

A new multipurpose genetic algorithm, based on Pareto optimality, is proposed to design logical topologies for wavelength-routed optical networks with the aim of minimizing both the congestion and the end-to-end delay. Simulation results show its efficiency when compared with other previously proposed algorithms, achieving in most cases optimal or near-optimal solutions, and in less time than other methods. Moreover, since the algorithm relies on Pareto optimality, not only does it obtain a single logical topology but a set of them, so that the network designer can easily select the most appropriate one according to the current network requirements.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 11, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off