Join operations in temporal databases

Join operations in temporal databases Joins are arguably the most important relational operators. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute for two reasons. First, conventional techniques are designed for the evaluation of joins with equality predicates rather than the inequality predicates prevalent in valid-time queries. Second, the presence of temporally varying data dramatically increases the size of a database. These factors indicate that specialized techniques are needed to efficiently evaluate temporal joins. We address this need for efficient join evaluation in temporal databases. Our purpose is twofold. We first survey all previously proposed temporal join operators. While many temporal join operators have been defined in previous work, this work has been done largely in isolation from competing proposals, with little, if any, comparison of the various operators. We then address evaluation algorithms, comparing the applicability of various algorithms to the temporal join operators and describing a performance study involving algorithms for one important operator, the temporal equijoin. Our focus, with respect to implementation, is on non-index-based join algorithms. Such algorithms do not rely on auxiliary access paths but may exploit sort orderings to achieve efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Join operations in temporal databases

Loading next page...
 
/lp/springer_journal/join-operations-in-temporal-databases-g0pB9z092B
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0111-3
Publisher site
See Article on Publisher Site

Abstract

Joins are arguably the most important relational operators. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute for two reasons. First, conventional techniques are designed for the evaluation of joins with equality predicates rather than the inequality predicates prevalent in valid-time queries. Second, the presence of temporally varying data dramatically increases the size of a database. These factors indicate that specialized techniques are needed to efficiently evaluate temporal joins. We address this need for efficient join evaluation in temporal databases. Our purpose is twofold. We first survey all previously proposed temporal join operators. While many temporal join operators have been defined in previous work, this work has been done largely in isolation from competing proposals, with little, if any, comparison of the various operators. We then address evaluation algorithms, comparing the applicability of various algorithms to the temporal join operators and describing a performance study involving algorithms for one important operator, the temporal equijoin. Our focus, with respect to implementation, is on non-index-based join algorithms. Such algorithms do not rely on auxiliary access paths but may exploit sort orderings to achieve efficiency.

Journal

The VLDB JournalSpringer Journals

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off