Jellyfish of the Far Eastern Seas of Russia. 3. Biomass and abundance

Jellyfish of the Far Eastern Seas of Russia. 3. Biomass and abundance The biomass and abundance of large jellyfish (Cnidaria: Scyphozoa, Hydrozoa) was estimated and their seasonal and interannual dynamics was studied based on the data of trawl surveys conducted by the Pacific Research Fisheries Center (TINRO Center) in the Sea of Okhotsk, Bering Sea, Sea of Japan, and the Northwestern Pacific Ocean (NWPO) in 1991–2009. Most of the jellyfish biomass (over 95%) in the Sea of Okhotsk, Bering Sea, and NWPO was formed by Chrysaora spp., Cyanea capillata, Aequorea spp., Phacellophora camtschatica, and Aurelia limbata. The same species along with Calycopsis nematophora predominated in abundance in the Bering Sea and NWPO, while Ptychogena lactea, C. capillata, and Chrysaora spp. were most abundant in the Sea of Okhotsk. In the northwestern Sea of Japan, Aurelia aurita, C. capillata, and Aequorea spp. predominated both in abundance and biomass. Generally, the jellyfish abundance reached the highest values in the summer and fall and decreased abruptly in the winter. Meanwhile, the seasonal dynamics proved to be specific for each species and were manifested in some of them by reaching maximum values at various periods of the warm season, whereas the other (Tima sachalinensis and P. lactea) showed the reverse pattern of seasonal variations, with the highest abundance in cold months. Jellyfish biomass and abundance varied greatly from year to year, which was related to the short lifecycle and alternation between sexual and asexual generations, in which reproductive success was predetermined by various environmental factors. In the fall, year-to-year fluctuations of the relative biomass could increase by ten times. In 1991–2009, it varied from 200 to 2000 kg/km2 in the northern Sea of Okhotsk, from 500 to 4200 kg/km2 in the northwestern Bering Sea, and from 300 to 3700 kg/km2 in the southwestern Bering Sea. Taking the jellyfish abundance estimates into account, along with the vertical distribution and the seasonal dynamics, the overall biomass of large species that occurred in trawl catches in Far Eastern seas and adjacent Pacific waters during the warm season could reach 13.0–15.0 million tons, of which up to about 6.0 million tons would be concentrated in the western Bering Sea and 5.5–6.0 million tons in the Sea of Okhotsk. Russian Journal of Marine Biology Springer Journals

Jellyfish of the Far Eastern Seas of Russia. 3. Biomass and abundance

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2011 by Pleiades Publishing, Ltd.
Life Sciences; Freshwater & Marine Ecology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial