Iterative resource pooling for bandwidth allocation in TDM-PON: algorithm, convergence and experimental evaluation

Iterative resource pooling for bandwidth allocation in TDM-PON: algorithm, convergence and... In this paper, we propose a new dynamic bandwidth allocation technique, SLIding Cycle Time (SLICT) for TDM-PON, specifically focused on ethernet passive optical network (EPON). Based on the sliding cycle time constraint, the proposed algorithm guarantees the maximum polling interval, an essential property for delay-sensitive applications and interactive services. We then introduce an iterative resource pooling that processes bursty best-effort traffic and achieves high throughput even under non-uniform upstream traffic distribution. We prove that greedy iterative resource pooling converges to equal resource allocation exponentially fast. Extensive numerical simulations show that SLICT outperforms existing techniques in all aspects: throughput, delay, packet loss and average queue size. Finally, SLICT has been implemented on an EPON FPGA board and the performance is confirmed under real traffic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Iterative resource pooling for bandwidth allocation in TDM-PON: algorithm, convergence and experimental evaluation

Loading next page...
 
/lp/springer_journal/iterative-resource-pooling-for-bandwidth-allocation-in-tdm-pon-ioI0zvcsFM
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Characterization and Evaluation of Materials; Electrical Engineering
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-012-0374-y
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a new dynamic bandwidth allocation technique, SLIding Cycle Time (SLICT) for TDM-PON, specifically focused on ethernet passive optical network (EPON). Based on the sliding cycle time constraint, the proposed algorithm guarantees the maximum polling interval, an essential property for delay-sensitive applications and interactive services. We then introduce an iterative resource pooling that processes bursty best-effort traffic and achieves high throughput even under non-uniform upstream traffic distribution. We prove that greedy iterative resource pooling converges to equal resource allocation exponentially fast. Extensive numerical simulations show that SLICT outperforms existing techniques in all aspects: throughput, delay, packet loss and average queue size. Finally, SLICT has been implemented on an EPON FPGA board and the performance is confirmed under real traffic.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 24, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off