Issues of ecosystem-based management of forage fisheries in “open” non-stationary ecosystems: the example of the sardine fishery in the Gulf of California

Issues of ecosystem-based management of forage fisheries in “open” non-stationary ecosystems:... The Gulf of California system presents major challenges to the still developing frameworks for ecosystem-based management (EBM). It is very much an open system and is intermittently subject to important influxes of migratory visitors, including large pelagic predatory fishes and small pelagic forage fishes. These migrants include the more tropical species from the coastal ecosystems to the south and perhaps subtropical sardines and anchovies from the California Current upwelling system. In addition to the multi-annual ENSO-scale and what may seem to be rather erratic episodes of major population incursions, the Gulf presents nonstationary, transient aspects on a variety of longer time scales. Moreover, the removal of top predators by commercial and sport fisheries has introduced trends that must be affecting the entire ecosystem, and certainly the forage fishes that are their major prey base. In addition to size limits, fishing seasons, area closures and license limitations, the fishery is managed by an ad hoc adaptive management system, in which the fishing season can be shortened or additional areas closed to fishing if pre-season exploratory fishing surveys indicate a shortage of small pelagic fishes on the fishing grounds. Whether this system is likely to be sustainable in the long term is difficult to determine, given the potential for rapid changes in the system because of environmental changes and/or feedbacks within the food web. Thus it appears that innovative management frameworks, among other things utilizing the comparative method, may be required in order to determine defensible tradeoffs between precaution and resource utilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Issues of ecosystem-based management of forage fisheries in “open” non-stationary ecosystems: the example of the sardine fishery in the Gulf of California

Loading next page...
 
/lp/springer_journal/issues-of-ecosystem-based-management-of-forage-fisheries-in-open-non-qaRU3HH6Gt
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology ; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-009-9118-1
Publisher site
See Article on Publisher Site

Abstract

The Gulf of California system presents major challenges to the still developing frameworks for ecosystem-based management (EBM). It is very much an open system and is intermittently subject to important influxes of migratory visitors, including large pelagic predatory fishes and small pelagic forage fishes. These migrants include the more tropical species from the coastal ecosystems to the south and perhaps subtropical sardines and anchovies from the California Current upwelling system. In addition to the multi-annual ENSO-scale and what may seem to be rather erratic episodes of major population incursions, the Gulf presents nonstationary, transient aspects on a variety of longer time scales. Moreover, the removal of top predators by commercial and sport fisheries has introduced trends that must be affecting the entire ecosystem, and certainly the forage fishes that are their major prey base. In addition to size limits, fishing seasons, area closures and license limitations, the fishery is managed by an ad hoc adaptive management system, in which the fishing season can be shortened or additional areas closed to fishing if pre-season exploratory fishing surveys indicate a shortage of small pelagic fishes on the fishing grounds. Whether this system is likely to be sustainable in the long term is difficult to determine, given the potential for rapid changes in the system because of environmental changes and/or feedbacks within the food web. Thus it appears that innovative management frameworks, among other things utilizing the comparative method, may be required in order to determine defensible tradeoffs between precaution and resource utilization.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: May 29, 2009

References

  • Why fishing magnifies fluctuations in fish abundance
    Anderson, CNK; Hsieh, CH; Sandin, SA; Hewitt, R; Hollowed, A; Beddington, J; May, RM; Sugihara, G
  • Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico
    Arreguín-Sanchez, F; Arcos, E; Chavez, EA
  • Cod recruitment is strongly affected by climate when stock biomass is low
    Brander, KM
  • Changes in fisheries management in Mexico: effects of increasing scientific input and public participation
    Hernandez, A; Kempton, W
  • Influence of population decline, fishing and spawner variability on the recovery of marine fish
    Hutchings, JA

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off