ISPpy1, a novel mobile element of the ancient Psychrobacter maritimus permafrost strain: Translocations in Escherichia coli K-12 cells and formation of composite transposons

ISPpy1, a novel mobile element of the ancient Psychrobacter maritimus permafrost strain:... It was shown that IS element ISPpy1 isolated earlier in the permafrost strain Psychrobacter maritimus MR29-12 has a high level of functional activity in cells of the heterologous host Escherichia coli K-12. ISPpy1 can be translocated in E. coli cells by itself and mobilize adjacent genes and can also form composite transposons flanked by two copies of this element. Apart from translocations between different plasmids, the composite ISPpy1-containing transposon Tn5080a is capable of translocation from the plasmid into the E. coli chromosome with high frequency and from the chromosome into the plasmid. Among products of Tn5080a transposition into plasmid R388, simple insertions were predominantly formed together with cointegrates. Upon mobilization of adjacent genes with the use of one ISPpy1 copy, only cointegrates arise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

ISPpy1, a novel mobile element of the ancient Psychrobacter maritimus permafrost strain: Translocations in Escherichia coli K-12 cells and formation of composite transposons

Loading next page...
 
/lp/springer_journal/isppy1-a-novel-mobile-element-of-the-ancient-psychrobacter-maritimus-sgMfsHQ1jv
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Animal Genetics and Genomics; Microbial Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795412020111
Publisher site
See Article on Publisher Site

Abstract

It was shown that IS element ISPpy1 isolated earlier in the permafrost strain Psychrobacter maritimus MR29-12 has a high level of functional activity in cells of the heterologous host Escherichia coli K-12. ISPpy1 can be translocated in E. coli cells by itself and mobilize adjacent genes and can also form composite transposons flanked by two copies of this element. Apart from translocations between different plasmids, the composite ISPpy1-containing transposon Tn5080a is capable of translocation from the plasmid into the E. coli chromosome with high frequency and from the chromosome into the plasmid. Among products of Tn5080a transposition into plasmid R388, simple insertions were predominantly formed together with cointegrates. Upon mobilization of adjacent genes with the use of one ISPpy1 copy, only cointegrates arise.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial