Isotopic effect in the radiolysis of water. Diffusion-kinetic modelling up to 300°C

Isotopic effect in the radiolysis of water. Diffusion-kinetic modelling up to 300°C Diffusion-kinetic calculations [1-3] have been analysed to determine the isotopic effect in the radiolysis of water with ionising radiation of linear energy transfer characteristics (LET) from 0.2 to 60 eV/nm and at temperatures up to 300°C. This analysis shows that, for low LET radiation, the spur decay of e- aq is slower in D2O and results in a higher yield of e- aq, g(e- aq), at 10-7 -10-6s after the ionisation event. In low LET radiolysis, g(OD) ≈ g(OH) over the whole range of temperature but in high LET radiolysis g(OD) is clearly lower than g(OH). The isotopic effect on the yields of the radical products is enhanced by increasing LET but diminished by increasing temperature. The yields of the molecular products show the opposite isotopic effect to their radical precursors, namely g(D2) is 10-20% lower than g(H2) and g(D2O2) > g(H2O2). A particularly significant difference between g(D2O2) and g(H2O2) has been found at LET = 20 eV/nm. The isotopic dependence of the g-values estimated for fast neutron radiolysis is also presented. Research on Chemical Intermediates Springer Journals

Isotopic effect in the radiolysis of water. Diffusion-kinetic modelling up to 300°C

Loading next page...
Brill Academic Publishers
Copyright © 2001 by VSP 2001
Chemistry; Inorganic Chemistry; Physical Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial