Isolation of Two Radiation Resistant and Desiccation Tolerant Bacteria, Modestobacter sp. A2 and Maritalea sp. B9, from Gandom Beryan Hill in the Lut Desert of Iran

Isolation of Two Radiation Resistant and Desiccation Tolerant Bacteria, Modestobacter sp. A2 and... Although dryland ecosystems are the most abundant terrestrial biomes on the Earth, relatively little is known about their microbial diversity and potential metabolic activities. Therefore, the bacterial diversity of the Lut Desert in Iran has been remained largely obscure. In this study, ionizing radiation resistant bacteria from arid Gandom Beryan region was investigated by a culture-dependent method. After exposing the soil and surface sand samples to different periods of dehydration in a desiccator containing silica gel, two nonendospore- forming bacterial isolates were recovered by plating on R2A and TSA agar media and then subjected to a desiccation and ionizing radiation resistance assay. The isolates A2 and B9 were still recovered after 8 weeks in a desiccator containing silica gel and were moderately resistant to gamma radiation with a D10 value between 2 and 4 kGy. Strains A2 and B9 were affiliated with Modestobacter muralis MDVD1T (99.7% similarity) and Maritalea mobilis E6T (97.3% similarity) respectively, using 16S rRNA gene sequence analysis. This is the first report of radiation resistant bacteria which belongs to the genus Maritalea. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microbiology Springer Journals

Isolation of Two Radiation Resistant and Desiccation Tolerant Bacteria, Modestobacter sp. A2 and Maritalea sp. B9, from Gandom Beryan Hill in the Lut Desert of Iran

Loading next page...
 
/lp/springer_journal/isolation-of-two-radiation-resistant-and-desiccation-tolerant-bacteria-ODm0KtrRnj
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Microbiology; Medical Microbiology
ISSN
0026-2617
eISSN
1608-3237
D.O.I.
10.1134/S0026261718030104
Publisher site
See Article on Publisher Site

Abstract

Although dryland ecosystems are the most abundant terrestrial biomes on the Earth, relatively little is known about their microbial diversity and potential metabolic activities. Therefore, the bacterial diversity of the Lut Desert in Iran has been remained largely obscure. In this study, ionizing radiation resistant bacteria from arid Gandom Beryan region was investigated by a culture-dependent method. After exposing the soil and surface sand samples to different periods of dehydration in a desiccator containing silica gel, two nonendospore- forming bacterial isolates were recovered by plating on R2A and TSA agar media and then subjected to a desiccation and ionizing radiation resistance assay. The isolates A2 and B9 were still recovered after 8 weeks in a desiccator containing silica gel and were moderately resistant to gamma radiation with a D10 value between 2 and 4 kGy. Strains A2 and B9 were affiliated with Modestobacter muralis MDVD1T (99.7% similarity) and Maritalea mobilis E6T (97.3% similarity) respectively, using 16S rRNA gene sequence analysis. This is the first report of radiation resistant bacteria which belongs to the genus Maritalea.

Journal

MicrobiologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off