Isolation of high molecular weight and humic acid-free metagenomic DNA from lignocellulose-rich samples compatible for direct fosmid cloning

Isolation of high molecular weight and humic acid-free metagenomic DNA from lignocellulose-rich... Activity-based screening of metagenomic DNA libraries is a promising approach to fish out genes encoding novel bioactive compounds/enzymes of industrial importance. The starting point of such functional screening in fosmid vectors is isolation of high molecular weight (HMW) DNA of sufficient purity from diverse environments. Metagenomic DNA isolation protocols mostly employ mechanical cell lysis that yields fragmented DNA. Those established for HMW DNA using enzymatic lysis have not considered samples with high lignocellulose or humic acid content. Enzymes from such environments are in great demand for bioenergy, paper, and related industries. Thus, an improved method was standardized that has three key features, i.e., use of harvested microbial biomass instead of raw samples, removal of humic substances prior to cell lysis by aluminum sulfate flocculation, and enzymatic/chemical lysis of cells with a lysozyme, mutanolysin, proteinase K, and SDS cocktail followed by phenol-chloroform extraction and precipitation of DNA by polyethylene glycol and NaCl. HMW DNA (~ 40 kb) was efficiently isolated from garden and forest soils, rice straw compost, and degrading wood from a hypersaline lake. The humic acid removal efficiency across samples was 96–98%. The isolated DNA was of high quality/purity and could be successfully used in downstream applications like PCR, ligation, and fosmid cloning. In fact, the DNA was directly used without any size selection, for fosmid library preparation with 70–90% efficiency as compared to the control insert. Thus, the method could suitably be used for HMW DNA isolation for the functional screening of enzymes from diverse humic acid-/lignocellulose-rich environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Isolation of high molecular weight and humic acid-free metagenomic DNA from lignocellulose-rich samples compatible for direct fosmid cloning

Loading next page...
 
/lp/springer_journal/isolation-of-high-molecular-weight-and-humic-acid-free-metagenomic-dna-axUtJdOyPU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-018-9102-6
Publisher site
See Article on Publisher Site

Abstract

Activity-based screening of metagenomic DNA libraries is a promising approach to fish out genes encoding novel bioactive compounds/enzymes of industrial importance. The starting point of such functional screening in fosmid vectors is isolation of high molecular weight (HMW) DNA of sufficient purity from diverse environments. Metagenomic DNA isolation protocols mostly employ mechanical cell lysis that yields fragmented DNA. Those established for HMW DNA using enzymatic lysis have not considered samples with high lignocellulose or humic acid content. Enzymes from such environments are in great demand for bioenergy, paper, and related industries. Thus, an improved method was standardized that has three key features, i.e., use of harvested microbial biomass instead of raw samples, removal of humic substances prior to cell lysis by aluminum sulfate flocculation, and enzymatic/chemical lysis of cells with a lysozyme, mutanolysin, proteinase K, and SDS cocktail followed by phenol-chloroform extraction and precipitation of DNA by polyethylene glycol and NaCl. HMW DNA (~ 40 kb) was efficiently isolated from garden and forest soils, rice straw compost, and degrading wood from a hypersaline lake. The humic acid removal efficiency across samples was 96–98%. The isolated DNA was of high quality/purity and could be successfully used in downstream applications like PCR, ligation, and fosmid cloning. In fact, the DNA was directly used without any size selection, for fosmid library preparation with 70–90% efficiency as compared to the control insert. Thus, the method could suitably be used for HMW DNA isolation for the functional screening of enzymes from diverse humic acid-/lignocellulose-rich environments.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off