Isolation and identification of a gene in response to rice blast disease in rice

Isolation and identification of a gene in response to rice blast disease in rice We combined cDNA amplified fragment length polymorphism (cDNA-AFLP) with bulked segregant analysis (BSA) to detect genes that control rice blast (Magnaporthe grisea) resistance in a double-haploid (DH) population derived from a cross between a blast-resistant variety, Zhai Ye Qing8 (ZYQ8), and a blast-susceptible variety, Jin Xi17 (JX17). In cDNA-AFLP analysis between a blast resistance (R) pool and a blast susceptibility (S) pool from the DH population, 12 transcript-derived fragments (TDFs) that were present in only one of the two pools were detected, 8 of which were from the R pool and 4 from the S pool. Mapping analysis of these TDFs by using the DH mapping population showed that five of them, R1, R8, S9, S16 and S17, were located on chromosome 1. Sequence comparison and allelic analysis showed thatR1/S16 and R8/S9 were two pairs of allelic genes. The full-length cDNA sequences of R1/S16, S17 and R8/S were obtained through cDNA library screening, in which only the expression level of R8 cDNA was up-regulated by inoculation with the blast isolate zh10814 and not affected by mock treatment, suggesting that R8 was implicated in the signaling pathways of the rice blast resistance reaction. Protein function prediction showed that R8 cDNA encodes a protein with high identity to a putative calmodulin-binding protein in Arabidopsis thaliana which belongs to the P-loop-containing nucleotide triphosphate hydrolases superfamily that contains a number of various kinases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Isolation and identification of a gene in response to rice blast disease in rice

Loading next page...
 
/lp/springer_journal/isolation-and-identification-of-a-gene-in-response-to-rice-blast-ZJhBM7cwFb
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000028770.11422.88
Publisher site
See Article on Publisher Site

Abstract

We combined cDNA amplified fragment length polymorphism (cDNA-AFLP) with bulked segregant analysis (BSA) to detect genes that control rice blast (Magnaporthe grisea) resistance in a double-haploid (DH) population derived from a cross between a blast-resistant variety, Zhai Ye Qing8 (ZYQ8), and a blast-susceptible variety, Jin Xi17 (JX17). In cDNA-AFLP analysis between a blast resistance (R) pool and a blast susceptibility (S) pool from the DH population, 12 transcript-derived fragments (TDFs) that were present in only one of the two pools were detected, 8 of which were from the R pool and 4 from the S pool. Mapping analysis of these TDFs by using the DH mapping population showed that five of them, R1, R8, S9, S16 and S17, were located on chromosome 1. Sequence comparison and allelic analysis showed thatR1/S16 and R8/S9 were two pairs of allelic genes. The full-length cDNA sequences of R1/S16, S17 and R8/S were obtained through cDNA library screening, in which only the expression level of R8 cDNA was up-regulated by inoculation with the blast isolate zh10814 and not affected by mock treatment, suggesting that R8 was implicated in the signaling pathways of the rice blast resistance reaction. Protein function prediction showed that R8 cDNA encodes a protein with high identity to a putative calmodulin-binding protein in Arabidopsis thaliana which belongs to the P-loop-containing nucleotide triphosphate hydrolases superfamily that contains a number of various kinases.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off