Isolation and Genetic Study of Erwinia Mutants Devoid of Common Components of the Phosphoenolpyruvate-Dependent Phosphotransferase System

Isolation and Genetic Study of Erwinia Mutants Devoid of Common Components of the... Mutants of bacteria belonging the genus Erwinia(Erwinia chrysanthemi andErwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI + allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that theptsIand ptsH genes ofE. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas theptsH gene is located at 175 min. Sequencing of a portion of theE. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Isolation and Genetic Study of Erwinia Mutants Devoid of Common Components of the Phosphoenolpyruvate-Dependent Phosphotransferase System

Loading next page...
 
/lp/springer_journal/isolation-and-genetic-study-of-erwinia-mutants-devoid-of-common-P19u0QSJeS
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1015535029318
Publisher site
See Article on Publisher Site

Abstract

Mutants of bacteria belonging the genus Erwinia(Erwinia chrysanthemi andErwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI + allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that theptsIand ptsH genes ofE. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas theptsH gene is located at 175 min. Sequencing of a portion of theE. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off