Isolation and characterization of a rice homebox gene, OSH15

Isolation and characterization of a rice homebox gene, OSH15 In many eukaryotic organisms including plants, homeobox genes are thought to be master regulators that establish the cellular or regional identities and specify the fundamental body plan. We isolated and characterized a cDNA designated OSH15 (Oryza sativa homeobox 15) that encodes a KNOTTED-type homeodomain protein. Transgenic tobacco plants overexpressing the OSH15 cDNA showed a dramatically altered morphological phenotype caused by disturbance of specific aspects of tobacco development, thereby indicating the involvement of OSH15 in plant development. We analyzed the in situ mRNA localization of OSH15 through the whole plant life cycle, comparing the expression pattern with that of another rice homeobox gene, OSH1. In early embryogenesis, both genes were expressed as the same pattern at a region where the shoot apical meristem would develop later. In late embryogenesis, the expression pattern of the two genes became different. Whereas the expression of OSH1 continued within the shoot apical meristem, OSH15 expression within the shoot apical meristem ceased but became observable in a ring shaped pattern at the boundaries of some embryonic organs. This pattern of expression was similar to that observed around vegetative or reproductive shoots, or the floral meristem in mature plants. RNA in situ localization data suggest that OSH15 may play roles in the shoot organization during early embryogenesis and thereafter, OSH15 may be involved in morphogenetic events around the shoot apical meristem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Isolation and characterization of a rice homebox gene, OSH15

Loading next page...
 
/lp/springer_journal/isolation-and-characterization-of-a-rice-homebox-gene-osh15-zjMZpIeuyQ
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006065622251
Publisher site
See Article on Publisher Site

Abstract

In many eukaryotic organisms including plants, homeobox genes are thought to be master regulators that establish the cellular or regional identities and specify the fundamental body plan. We isolated and characterized a cDNA designated OSH15 (Oryza sativa homeobox 15) that encodes a KNOTTED-type homeodomain protein. Transgenic tobacco plants overexpressing the OSH15 cDNA showed a dramatically altered morphological phenotype caused by disturbance of specific aspects of tobacco development, thereby indicating the involvement of OSH15 in plant development. We analyzed the in situ mRNA localization of OSH15 through the whole plant life cycle, comparing the expression pattern with that of another rice homeobox gene, OSH1. In early embryogenesis, both genes were expressed as the same pattern at a region where the shoot apical meristem would develop later. In late embryogenesis, the expression pattern of the two genes became different. Whereas the expression of OSH1 continued within the shoot apical meristem, OSH15 expression within the shoot apical meristem ceased but became observable in a ring shaped pattern at the boundaries of some embryonic organs. This pattern of expression was similar to that observed around vegetative or reproductive shoots, or the floral meristem in mature plants. RNA in situ localization data suggest that OSH15 may play roles in the shoot organization during early embryogenesis and thereafter, OSH15 may be involved in morphogenetic events around the shoot apical meristem.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off