Ionic Permeability on Isolated Mouse Liver Nuclei: Influence of ATP and Ca2+

Ionic Permeability on Isolated Mouse Liver Nuclei: Influence of ATP and Ca2+ Patch-clamp experiments on isolated nuclei revealed the existence of ionic channels on the nuclear envelope, but their exact localization and function are still unknown. Recent studies have demonstrated that ATP and calcium ions play an important role in nucleocytoplasmic protein traffic. ATP is essential to allow big molecules in and out of the nucleus. However, a cytoplasmic rise of calcium ions above 300 nm decreases both ATP-dependent transport and passive diffusion through the nuclear envelope. The use of isolated nuclei placed in a saline solution provides the possibility for testing only the compounds added in the bath or in the recording pipette. In the present study, we show that ATP is responsible for an increase of nuclear ionic permeability on isolated nuclei. This result not only confirms data previously reported in in situ nuclei, but also suggests that ATP is directly involved in the modulation of passive ionic permeability. In these particular experimental conditions, calcium ions decrease the channel current starting from a concentration of 1 μm. The parallelism in the modulation action of ATP and Ca++ between nuclear pores and ionic channels present on the nuclear envelope contributes to the support of the idea that an ionic pathway is associated with the pore complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Ionic Permeability on Isolated Mouse Liver Nuclei: Influence of ATP and Ca2+

Loading next page...
 
/lp/springer_journal/ionic-permeability-on-isolated-mouse-liver-nuclei-influence-of-atp-and-uYs3Esol0H
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900237
Publisher site
See Article on Publisher Site

Abstract

Patch-clamp experiments on isolated nuclei revealed the existence of ionic channels on the nuclear envelope, but their exact localization and function are still unknown. Recent studies have demonstrated that ATP and calcium ions play an important role in nucleocytoplasmic protein traffic. ATP is essential to allow big molecules in and out of the nucleus. However, a cytoplasmic rise of calcium ions above 300 nm decreases both ATP-dependent transport and passive diffusion through the nuclear envelope. The use of isolated nuclei placed in a saline solution provides the possibility for testing only the compounds added in the bath or in the recording pipette. In the present study, we show that ATP is responsible for an increase of nuclear ionic permeability on isolated nuclei. This result not only confirms data previously reported in in situ nuclei, but also suggests that ATP is directly involved in the modulation of passive ionic permeability. In these particular experimental conditions, calcium ions decrease the channel current starting from a concentration of 1 μm. The parallelism in the modulation action of ATP and Ca++ between nuclear pores and ionic channels present on the nuclear envelope contributes to the support of the idea that an ionic pathway is associated with the pore complex.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off