Ion transport through deformable porous media: derivation of the macroscopic equations using upscaling

Ion transport through deformable porous media: derivation of the macroscopic equations using... We study the homogenization (or upscaling) of the transport of a multicomponent electrolyte in a dilute Newtonian solvent through a deformable porous medium. The pore scale interaction between the flow and the structure deformation (modeled by linearized elasticity equations) is taken into account. After a careful adimensionalization process, we first consider so-called equilibrium solutions, in the absence of external forces, for which the velocity and diffusive fluxes vanish and the electrostatic potential is the solution of a Poisson–Boltzmann equation. When the motion is governed by a small static electric field and small hydrodynamic and elastic forces, we use O’Brien’s argument to deduce a linearized model. Then we perform the homogenization of these linearized equations for a suitable choice of time scale. It turns out that the deformation of the porous medium is weakly coupled to the electrokinetics system in the sense that it does not influence electrokinetics although the latter one yields an osmotic pressure term in the mechanical equations. As a consequence, the effective tensor satisfies Onsager properties, namely is symmetric positive definite. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational and Applied Mathematics Springer Journals

Ion transport through deformable porous media: derivation of the macroscopic equations using upscaling

Loading next page...
 
/lp/springer_journal/ion-transport-through-deformable-porous-media-derivation-of-the-miIDhppwQ7
Publisher
Springer International Publishing
Copyright
Copyright © 2016 by SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional
Subject
Mathematics; Applications of Mathematics; Computational Mathematics and Numerical Analysis; Mathematical Applications in the Physical Sciences; Mathematical Applications in Computer Science
ISSN
0101-8205
eISSN
1807-0302
D.O.I.
10.1007/s40314-016-0321-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial