Ion engineering techniques for the preparation of the highly effective TiO2 photocatalysts operating under visible light irradiation

Ion engineering techniques for the preparation of the highly effective TiO2 photocatalysts... The successful application of ion engineering techniques for the development of TiO2 photocatalysts operating under visible and/or solar light irradiations has been summarized in this review article. First, we have physically doped various transition metal ions within a TiO2 lattice on an atomic level by using an advanced metal ion implantation method. The metal ion implanted TiO2 could efficiently work as a photocatalyst under visible light irradiation. Some field tests under solar light irradiation clearly revealed that the Cr or V ions implanted TiO2 samples showed 2–3 times higher photocatalytic reactivity than the un-implanted TiO2. Second, we have developed the visible light responsive TiO2 thin film photocatalyst by a single process using an RF-magnetron sputtering (RF-MS) deposition method. The vis-type TiO2 thin films showed high photocatalytic reactivity for various reactions such as reduction of NOx, degradation of organic compounds, and splitting of H2O under visible and/or solar light irradiations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Ion engineering techniques for the preparation of the highly effective TiO2 photocatalysts operating under visible light irradiation

Loading next page...
 
/lp/springer_journal/ion-engineering-techniques-for-the-preparation-of-the-highly-effective-vOWw0izAl7
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Catalysis; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0465-x
Publisher site
See Article on Publisher Site

Abstract

The successful application of ion engineering techniques for the development of TiO2 photocatalysts operating under visible and/or solar light irradiations has been summarized in this review article. First, we have physically doped various transition metal ions within a TiO2 lattice on an atomic level by using an advanced metal ion implantation method. The metal ion implanted TiO2 could efficiently work as a photocatalyst under visible light irradiation. Some field tests under solar light irradiation clearly revealed that the Cr or V ions implanted TiO2 samples showed 2–3 times higher photocatalytic reactivity than the un-implanted TiO2. Second, we have developed the visible light responsive TiO2 thin film photocatalyst by a single process using an RF-magnetron sputtering (RF-MS) deposition method. The vis-type TiO2 thin films showed high photocatalytic reactivity for various reactions such as reduction of NOx, degradation of organic compounds, and splitting of H2O under visible and/or solar light irradiations.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 18, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off