Ion Channels Induced in Planar Lipid Bilayers by the Bacillus thuringiensis Toxin Cry1Aa in the Presence of Gypsy Moth (Lymantria dispar) Brush Border Membrane

Ion Channels Induced in Planar Lipid Bilayers by the Bacillus thuringiensis Toxin Cry1Aa in the... The apical brush border membrane, the main target site of Bacillus thuringiensis toxins, was isolated from gypsy moth (Lymantria dispar) larval midguts and fused to artificial planar lipid bilayer membranes. Under asymmetrical N-methyl-d-glucamine-HCl conditions (450 mm cis/150 mm trans, pH 9.0), which significantly reduce endogenous channel activity, trypsin-activated Cry1Aa, a B. thuringiensis insecticidal protein active against the gypsy moth in vivo, induced a large increase in bilayer membrane conductance at much lower concentrations (1.1–2.15 nm) than in receptor-free bilayer membranes. At least 5 main single-channel transitions with conductances ranging from 85 to 420 pS were resolved. These Cry1Aa channels share similar ionic selectivity with P Cl/P NMDG permeability ratios ranging from 4 to 8. They show no evidence of current rectification. Analysis of the macroscopic current flowing through the composite bilayer suggested voltage-dependence of several channels. In comparison, the conductance of the pores formed by 100–500 nm Cry1Aa in receptor-free bilayer membranes was significantly smaller (about 8-fold) and their P Cl/P NMDG permeability ratios were also reduced (2- to 4-fold). This study provides a detailed demonstration that the target insect midgut brush border membrane material promotes considerably pore formation by a B. thuringiensis Cry toxin and that this interaction results in altered channel properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Ion Channels Induced in Planar Lipid Bilayers by the Bacillus thuringiensis Toxin Cry1Aa in the Presence of Gypsy Moth (Lymantria dispar) Brush Border Membrane

Loading next page...
 
/lp/springer_journal/ion-channels-induced-in-planar-lipid-bilayers-by-the-bacillus-1sfXv0X0Z1
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0071-8
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial