Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells

Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of... In this study, we aimed to investigate the effect of electro-acupuncture (EA) at the Zusanli acupoint (ST36) on interleukin (IL)-33-mediated mast cell activation. Firstly, 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats was developed with or without EA treatment. Then, rat peritoneal mast cells (RPMCs) were obtained and cultured in the presence of IL-33. EA treatment relieved ear swelling and reduced mast cell infiltration in the local inflammation area with DNFB challenge, accompanying the decrement of IL-33 production. RPMCs isolated from ACD rats with EA treatment showed significant downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation. However, there was no obvious difference in surface ST2 receptor expression among different groups. In addition, EA selectively altered IL-33 signaling, suppressing p38 phosphorylation as well as NF-κB- and AP-1-mediated transcription but not Akt phosphorylation. Importantly, EA lowered microRNA (miR)-155 expression in the RPMCs, which presented a positive correlation with IL-33-induced IL-6 production. Furthermore, overexpression of miR-155 in the RPMCs was established following miR-155 mimic transfection. RPMCs with the overexpressed miR-155 displayed an obvious increment of inflammatory cytokine and abrogated the inhibitive effect of EA on NF-κB- and AP-1-regulated transcription in response to IL-33 compared with those without transfected-miR-155. These findings demonstrate EA treatment inhibits NF-κB and AP-1 activation as well as promotes the negative feedback regulation of IL-33 signaling via targeting miR-155 in mast cells, which contribute to the anti-inflammatory effect of EA on DNFB-induced ACD in rats. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inflammation Springer Journals

Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells

Loading next page...
 
/lp/springer_journal/involvement-of-the-negative-feedback-of-il-33-signaling-in-the-anti-SnqYCC0tow
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Medicine & Public Health; Rheumatology; Internal Medicine; Pharmacology/Toxicology; Pathology
ISSN
0360-3997
eISSN
1573-2576
D.O.I.
10.1007/s10753-018-0740-8
Publisher site
See Article on Publisher Site

Abstract

In this study, we aimed to investigate the effect of electro-acupuncture (EA) at the Zusanli acupoint (ST36) on interleukin (IL)-33-mediated mast cell activation. Firstly, 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats was developed with or without EA treatment. Then, rat peritoneal mast cells (RPMCs) were obtained and cultured in the presence of IL-33. EA treatment relieved ear swelling and reduced mast cell infiltration in the local inflammation area with DNFB challenge, accompanying the decrement of IL-33 production. RPMCs isolated from ACD rats with EA treatment showed significant downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation. However, there was no obvious difference in surface ST2 receptor expression among different groups. In addition, EA selectively altered IL-33 signaling, suppressing p38 phosphorylation as well as NF-κB- and AP-1-mediated transcription but not Akt phosphorylation. Importantly, EA lowered microRNA (miR)-155 expression in the RPMCs, which presented a positive correlation with IL-33-induced IL-6 production. Furthermore, overexpression of miR-155 in the RPMCs was established following miR-155 mimic transfection. RPMCs with the overexpressed miR-155 displayed an obvious increment of inflammatory cytokine and abrogated the inhibitive effect of EA on NF-κB- and AP-1-regulated transcription in response to IL-33 compared with those without transfected-miR-155. These findings demonstrate EA treatment inhibits NF-κB and AP-1 activation as well as promotes the negative feedback regulation of IL-33 signaling via targeting miR-155 in mast cells, which contribute to the anti-inflammatory effect of EA on DNFB-induced ACD in rats.

Journal

InflammationSpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off