Involvement of Protein Tyrosine Kinase in Osmoregulation of Na+ Transport and Membrane Capacitance in Renal A6 Cells

Involvement of Protein Tyrosine Kinase in Osmoregulation of Na+ Transport and Membrane... Renal A6 cells have been reported in which hyposmolality stimulates Na+ transport by increasing the number of conducting amiloride-sensitive 4-pS Na+ channels at the apical membrane. To study a possible role of protein tyrosine kinase (PTK) in the hyposmolality-induced signaling, we investigated effects of PTK inhibitors on the hyposmolality-induced Na+ transport in A6 cells. Tyrphostin A23 (a PTK inhibitor) blocked the stimulatory action of hyposmolality on a number of the conducting Na+ channels. Tyrphostin A23 also abolished macroscopic Na+ currents (amiloride-sensitive short-circuit current, I Na ) by decreasing the elevating rate of the hyposmolality-increased I Na . Genistein (another type of PTK inhibitor) also showed an effect similar to tyrphostin A23. Brefeldin A (BFA), which is an inhibitor of intracellular translocation of protein, blocked the action of hyposmolality on I Na by diminishing the elevating rate of the hyposmolality-increased I Na , mimicking the inhibitory action of PTK inhibitor. Further, hyposmolality increased the activity of PTK. These observations suggest that hyposmolality would stimulate Na+ transport by translocating the Na+ channel protein (or regulatory protein) to the apical membrane via a PTK-dependent pathway. Further, hyposmolality also caused an increase in the plasma (apical) membrane capacitance, which was remarkably blocked by treatment with tyrphostin A23 or BFA. These observations also suggest that a PTK-dependent pathway would be involved in the hyposmolality-stimulated membrane fusion in A6 cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Involvement of Protein Tyrosine Kinase in Osmoregulation of Na+ Transport and Membrane Capacitance in Renal A6 Cells

Loading next page...
 
/lp/springer_journal/involvement-of-protein-tyrosine-kinase-in-osmoregulation-of-na-T29tAaPxaR
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001055
Publisher site
See Article on Publisher Site

Abstract

Renal A6 cells have been reported in which hyposmolality stimulates Na+ transport by increasing the number of conducting amiloride-sensitive 4-pS Na+ channels at the apical membrane. To study a possible role of protein tyrosine kinase (PTK) in the hyposmolality-induced signaling, we investigated effects of PTK inhibitors on the hyposmolality-induced Na+ transport in A6 cells. Tyrphostin A23 (a PTK inhibitor) blocked the stimulatory action of hyposmolality on a number of the conducting Na+ channels. Tyrphostin A23 also abolished macroscopic Na+ currents (amiloride-sensitive short-circuit current, I Na ) by decreasing the elevating rate of the hyposmolality-increased I Na . Genistein (another type of PTK inhibitor) also showed an effect similar to tyrphostin A23. Brefeldin A (BFA), which is an inhibitor of intracellular translocation of protein, blocked the action of hyposmolality on I Na by diminishing the elevating rate of the hyposmolality-increased I Na , mimicking the inhibitory action of PTK inhibitor. Further, hyposmolality increased the activity of PTK. These observations suggest that hyposmolality would stimulate Na+ transport by translocating the Na+ channel protein (or regulatory protein) to the apical membrane via a PTK-dependent pathway. Further, hyposmolality also caused an increase in the plasma (apical) membrane capacitance, which was remarkably blocked by treatment with tyrphostin A23 or BFA. These observations also suggest that a PTK-dependent pathway would be involved in the hyposmolality-stimulated membrane fusion in A6 cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off