Involvement of Methionine Residues in the Fast Inactivation Mechanism of the Sodium Current from Toad Skeletal Muscle Fibers

Involvement of Methionine Residues in the Fast Inactivation Mechanism of the Sodium Current from... The role of methionine residues on the fast inactivation of the sodium channel from toad skeletal muscle fibers was studied with the mild oxidant chloramine-T (CT). Isolated segments of fibers were voltage clamped in a triple Vaseline® gap chamber. Sodium current was isolated by replacing potassium ions by tetramethylammonium ions in the external and internal solutions. Externally applied chloramine-CT was found to render noninactivating a large fraction of sodium channels and to slow down the fast inactivation mechanism of the remainder fraction of inactivatable channels. The action of CT appeared to proceed first by slowing and then removing the fast inactivation mechanism. The voltage dependence of the steady-state inactivation of the inactivatable CT-treated currents was shifted +10 mV. CT also had a blocking effect on the sodium current, but was without effect on the activation mechanism. The effects of CT were time and concentration dependent and irreversible. The use of high CT concentrations and/or long exposure times was found to be deleterious to the fiber. This side effect precluded the complete removal of fast inactivation. The effects of CT on the fast inactivation of the sodium current can be explained assuming that at least two methionine residues are critically involved in the mechanism underlying this process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Involvement of Methionine Residues in the Fast Inactivation Mechanism of the Sodium Current from Toad Skeletal Muscle Fibers

Loading next page...
 
/lp/springer_journal/involvement-of-methionine-residues-in-the-fast-inactivation-mechanism-NBKUwnrswp
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900520
Publisher site
See Article on Publisher Site

Abstract

The role of methionine residues on the fast inactivation of the sodium channel from toad skeletal muscle fibers was studied with the mild oxidant chloramine-T (CT). Isolated segments of fibers were voltage clamped in a triple Vaseline® gap chamber. Sodium current was isolated by replacing potassium ions by tetramethylammonium ions in the external and internal solutions. Externally applied chloramine-CT was found to render noninactivating a large fraction of sodium channels and to slow down the fast inactivation mechanism of the remainder fraction of inactivatable channels. The action of CT appeared to proceed first by slowing and then removing the fast inactivation mechanism. The voltage dependence of the steady-state inactivation of the inactivatable CT-treated currents was shifted +10 mV. CT also had a blocking effect on the sodium current, but was without effect on the activation mechanism. The effects of CT were time and concentration dependent and irreversible. The use of high CT concentrations and/or long exposure times was found to be deleterious to the fiber. This side effect precluded the complete removal of fast inactivation. The effects of CT on the fast inactivation of the sodium current can be explained assuming that at least two methionine residues are critically involved in the mechanism underlying this process.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off