Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules

Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules In secretory granules and vesicles, membrane transporters have been predicted to permeate water molecules, ions and/or small solutes to swell the granules and promote membrane fusion. We have previously demonstrated that aquaporin-6 (AQP6), a water channel protein, which permeates anions, is localized in rat parotid secretory granules (Matsuki-Fukushima et al., Cell Tissue Res 332:73–80, 2008). Because the localization of AQP6 in other organs is restricted to cytosolic vesicles, the native function or functions of AQP6 in vivo has not been well determined. To characterize the channel property in granule membranes, the solute permeation-induced lysis of purified secretory granules is a useful marker. To analyze the role of AQP6 in secretory granule membranes, we used Hg2+, which is known to activate AQP6, and investigated the characteristics of solute permeability in rat parotid secretory granule lysis induced by Hg2+ (Hg lysis). The kinetics of osmotic secretory granule lysis in an iso-osmotic KCl solution was monitored by the decay of optical density at 540 nm using a spectrophotometer. Osmotic secretory granule lysis was markedly facilitated in the presence of 0.5–2.0 μM Hg2+, concentrations that activate AQP6. The Hg lysis was completely blocked by β-mercaptoethanol which disrupts Hg2+-binding, or by removal of chloride ions from the reaction medium. An anion channel blocker, DIDS, which does not affect AQP6, discriminated between DIDS-insensitive and sensitive components in Hg lysis. These results suggest that Hg lysis is required for anion permeability through the protein transporter. Hg lysis depended on anion conductance with a sequence of NO3 − > Br− > I− > Cl− and was facilitated by acidic pH. The anion selectivity for NO3 − and the acidic pH sensitivity were similar to the channel properties of AQP6. Taken together, it is likely that AQP6 permeates halide group anions as a Hg2+-sensitive anion channel in rat parotid secretory granules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules

Loading next page...
 
/lp/springer_journal/involvement-of-aqp6-in-the-mercury-sensitive-osmotic-lysis-of-rat-mikyfiaKDe
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-012-9522-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial