Investigation on the heat source profile on the finished surface in grinding based on the inverse heat transfer analysis

Investigation on the heat source profile on the finished surface in grinding based on the inverse... Grinding temperature field analysis is very significant to achieve controlled stress grinding and controlled grinding of affected layer depth. Heat source profile is an important basis for the grinding temperature field analysis. The heat source on the finished surface is more convenient than the heat source on the contact surface to perform grinding temperature field analysis both analytically and numerically. At present, the heat source profile on the finished surface was modeled to be rectangular, right triangular, triangular, or other shapes. However, all the modeled heat source profiles are not universally applicable under different grinding conditions. Therefore, the heat source profile on the finished surface under different grinding conditions needs to be further investigated. In this research, the inverse heat transfer analysis was performed to investigate the heat source profile on the finished surface under different grinding conditions. The investigation showed that the heat source profile on the finished surface is nearly right triangular in conventional shallow grinding, is triangular in creep feed grinding, and is close to be parabolic in HEDG (high efficiency deep grinding). Based on the investigation, the heat source profile on the finished surface was modeled as simple shapes to accommodate different grinding conditions. It was modeled to be right triangular in conventional shallow grinding and in creep feed grinding, and was modeled to be parabolic in HEDG. Error analyses of the predicted grinding temperatures obtained from the modeled heat source profiles were performed. The results showed that the modeled right triangular heat source profile is applicable in conventional shallow grinding and in creep feed grinding. The modeled parabolic heat source profile is applicable to most of the grinding parameters employed in HEDG. The modeled heat source profiles can conveniently serve as useful tools for grinding temperature field analysis in engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Investigation on the heat source profile on the finished surface in grinding based on the inverse heat transfer analysis

Loading next page...
 
/lp/springer_journal/investigation-on-the-heat-source-profile-on-the-finished-surface-in-fTCfoAKbGP
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0189-1
Publisher site
See Article on Publisher Site

Abstract

Grinding temperature field analysis is very significant to achieve controlled stress grinding and controlled grinding of affected layer depth. Heat source profile is an important basis for the grinding temperature field analysis. The heat source on the finished surface is more convenient than the heat source on the contact surface to perform grinding temperature field analysis both analytically and numerically. At present, the heat source profile on the finished surface was modeled to be rectangular, right triangular, triangular, or other shapes. However, all the modeled heat source profiles are not universally applicable under different grinding conditions. Therefore, the heat source profile on the finished surface under different grinding conditions needs to be further investigated. In this research, the inverse heat transfer analysis was performed to investigate the heat source profile on the finished surface under different grinding conditions. The investigation showed that the heat source profile on the finished surface is nearly right triangular in conventional shallow grinding, is triangular in creep feed grinding, and is close to be parabolic in HEDG (high efficiency deep grinding). Based on the investigation, the heat source profile on the finished surface was modeled as simple shapes to accommodate different grinding conditions. It was modeled to be right triangular in conventional shallow grinding and in creep feed grinding, and was modeled to be parabolic in HEDG. Error analyses of the predicted grinding temperatures obtained from the modeled heat source profiles were performed. The results showed that the modeled right triangular heat source profile is applicable in conventional shallow grinding and in creep feed grinding. The modeled parabolic heat source profile is applicable to most of the grinding parameters employed in HEDG. The modeled heat source profiles can conveniently serve as useful tools for grinding temperature field analysis in engineering.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off