Investigation on Structure and Thermomechanical Processing of Biobased Polymer Blends

Investigation on Structure and Thermomechanical Processing of Biobased Polymer Blends The structure and composition of a biobased polymer blend with wood like appearance was studied. The effects of processing time for mixing at 190 °C was investigated. The structure of the blend was unveiled combining fractionation techniques with size exclusion chromatography and nuclear magnetic resonance analysis. The material was found to be a blend of polylactide (PLA) polymer with 15.4 wt% ground softwood and 5 wt% soda lignin. The findings about composition supported the explanation of the thermal behavior and the processing stability analysis. The blend showed tensile properties degradation after mixing at 190 °C for 25 min. The ultimate tensile strength dropped from 29.75 to 4.85 MPa while the tensile modulus dropped from 5.3 to 4.2 GPa. The degradation behavior was explained in terms of the PLA degradation enhanced by the presence of the natural constituents in the blend. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Investigation on Structure and Thermomechanical Processing of Biobased Polymer Blends

Loading next page...
 
/lp/springer_journal/investigation-on-structure-and-thermomechanical-processing-of-biobased-HHuiUrQZy3
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
D.O.I.
10.1007/s10924-016-0857-5
Publisher site
See Article on Publisher Site

Abstract

The structure and composition of a biobased polymer blend with wood like appearance was studied. The effects of processing time for mixing at 190 °C was investigated. The structure of the blend was unveiled combining fractionation techniques with size exclusion chromatography and nuclear magnetic resonance analysis. The material was found to be a blend of polylactide (PLA) polymer with 15.4 wt% ground softwood and 5 wt% soda lignin. The findings about composition supported the explanation of the thermal behavior and the processing stability analysis. The blend showed tensile properties degradation after mixing at 190 °C for 25 min. The ultimate tensile strength dropped from 29.75 to 4.85 MPa while the tensile modulus dropped from 5.3 to 4.2 GPa. The degradation behavior was explained in terms of the PLA degradation enhanced by the presence of the natural constituents in the blend.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Oct 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off