Investigation on liquid film of urea–water solutions with diode laser absorption spectroscopy

Investigation on liquid film of urea–water solutions with diode laser absorption spectroscopy Measurement of multiparameter of liquid films (e.g., film thickness and concentration) is very important to understand the film formation processes in industrial applications. Here, a novel diode laser absorption spectroscopy (DLAS) sensor was developed to simultaneously measure the liquid film thickness and concentration of urea–water solutions by forming the transmittance ratio at two wavenumber positions. The performance of the sensor employed two diode lasers (6613.25 and 7187.50 cm−1) was first validated using a calibration tool providing liquid film of urea–water solutions with known film thickness (100–1000 μm) and mass fractions (5–50 wt%), and then, the sensor was applied to study a free-falling film of urea–water solutions on a vertical transparent quartz plate. Shadowgraph images were simultaneously taken as a means to obtain falling film thickness, and it was observed that measured film thickness was in good agreement with DLAS method and shadowgraph technique, and the deviation between these two techniques was 4.1 % when the falling film was stable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation on liquid film of urea–water solutions with diode laser absorption spectroscopy

Loading next page...
 
/lp/springer_journal/investigation-on-liquid-film-of-urea-water-solutions-with-diode-laser-lKTzQ2ckCD
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1941-7
Publisher site
See Article on Publisher Site

Abstract

Measurement of multiparameter of liquid films (e.g., film thickness and concentration) is very important to understand the film formation processes in industrial applications. Here, a novel diode laser absorption spectroscopy (DLAS) sensor was developed to simultaneously measure the liquid film thickness and concentration of urea–water solutions by forming the transmittance ratio at two wavenumber positions. The performance of the sensor employed two diode lasers (6613.25 and 7187.50 cm−1) was first validated using a calibration tool providing liquid film of urea–water solutions with known film thickness (100–1000 μm) and mass fractions (5–50 wt%), and then, the sensor was applied to study a free-falling film of urea–water solutions on a vertical transparent quartz plate. Shadowgraph images were simultaneously taken as a means to obtain falling film thickness, and it was observed that measured film thickness was in good agreement with DLAS method and shadowgraph technique, and the deviation between these two techniques was 4.1 % when the falling film was stable.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 21, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off