Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry

Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant... In the present study, we employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant. The tested drag-reducing fluid was a CTAC/NaSal/Water (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) system at 25°C. The weight concentration of CTAC was 30 ppm. Stereoscopic PIV measurement was performed for a water flow (Re=1.1×104) and a CTAC solution flow (Re=1.5×104 with 54% drag reduction) in both the streamwise–spanwise and wall-normal-spanwise planes, respectively. The three-dimensionality of hairpin vortex structures in the near-wall region for wall-bounded turbulent flow was reproduced by conditionally averaging the stereoscopic two-dimensional-three-component velocity fields. A series of wall-normal vortex cores were found to align with the near-wall low-speed streaks with opposite vorticity signals at both sides of the streaks and with the vorticity decreased on average by about one order of magnitude in CTAC solution flow compared with water flow; the spanwise spacing between the near-wall low-speed streaks in the solution flow is increased by about 46%. The streamwise vorticity of the vortex cores appearing in the wall-normal-spanwise plane was also decreased by the use of drag-reducing surfactant additives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry

Loading next page...
 
/lp/springer_journal/investigation-of-turbulence-structures-in-a-drag-reduced-turbulent-4VNMqVTjsR
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0061-1
Publisher site
See Article on Publisher Site

Abstract

In the present study, we employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant. The tested drag-reducing fluid was a CTAC/NaSal/Water (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) system at 25°C. The weight concentration of CTAC was 30 ppm. Stereoscopic PIV measurement was performed for a water flow (Re=1.1×104) and a CTAC solution flow (Re=1.5×104 with 54% drag reduction) in both the streamwise–spanwise and wall-normal-spanwise planes, respectively. The three-dimensionality of hairpin vortex structures in the near-wall region for wall-bounded turbulent flow was reproduced by conditionally averaging the stereoscopic two-dimensional-three-component velocity fields. A series of wall-normal vortex cores were found to align with the near-wall low-speed streaks with opposite vorticity signals at both sides of the streaks and with the vorticity decreased on average by about one order of magnitude in CTAC solution flow compared with water flow; the spanwise spacing between the near-wall low-speed streaks in the solution flow is increased by about 46%. The streamwise vorticity of the vortex cores appearing in the wall-normal-spanwise plane was also decreased by the use of drag-reducing surfactant additives.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 14, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off