Investigation of the surface of antifriction Al–Cu–Si–Sn–Pb aluminum alloys

Investigation of the surface of antifriction Al–Cu–Si–Sn–Pb aluminum alloys The tribological and mechanical properties of Al–Cu–Si–Sn–Pb alloys are studied. The effect of different alloying elements on the structure of their surface and its tribological properties is estimated. The alloys are studied at different stages of their production, i.e., after casting and homogenizing annealing. The character of surface transformations under friction simulated on fiction machines is investigated. The surface is visualized by means of optical and scanning probe microscopy and scanning electron microscopy combined with elemental analysis. Great amounts of oxygen leading to the formation of oxide particles with abrasive properties are revealed on the contact surfaces. The mass transfer of chemical elements also occurs in the contact area: the material of an insert “spreads” over the shaft to form a film of secondary structures. At small thicknesses, this film serves as a solid lubricant, but might promote the formation of scoring during the development of microrelief. The application of two hardness measurement methods, such as “microindentation” and “nanoindentation”, give mutually complementary results. The highest mechanical properties (hardness, up to 0.5 GPa) are established to be attained in silicon- and copper-containing alloys. Homogenizing annealing at 400°C is also revealed to decrease the hardness, but improve the plasticity, which is important for antifriction materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Investigation of the surface of antifriction Al–Cu–Si–Sn–Pb aluminum alloys

Loading next page...
 
/lp/springer_journal/investigation-of-the-surface-of-antifriction-al-cu-si-sn-pb-aluminum-vKPpHC4Slu
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Surfaces and Interfaces, Thin Films
ISSN
1027-4510
eISSN
1819-7094
D.O.I.
10.1134/S1027451017040292
Publisher site
See Article on Publisher Site

Abstract

The tribological and mechanical properties of Al–Cu–Si–Sn–Pb alloys are studied. The effect of different alloying elements on the structure of their surface and its tribological properties is estimated. The alloys are studied at different stages of their production, i.e., after casting and homogenizing annealing. The character of surface transformations under friction simulated on fiction machines is investigated. The surface is visualized by means of optical and scanning probe microscopy and scanning electron microscopy combined with elemental analysis. Great amounts of oxygen leading to the formation of oxide particles with abrasive properties are revealed on the contact surfaces. The mass transfer of chemical elements also occurs in the contact area: the material of an insert “spreads” over the shaft to form a film of secondary structures. At small thicknesses, this film serves as a solid lubricant, but might promote the formation of scoring during the development of microrelief. The application of two hardness measurement methods, such as “microindentation” and “nanoindentation”, give mutually complementary results. The highest mechanical properties (hardness, up to 0.5 GPa) are established to be attained in silicon- and copper-containing alloys. Homogenizing annealing at 400°C is also revealed to decrease the hardness, but improve the plasticity, which is important for antifriction materials.

Journal

Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off