Investigation of the influence of cyclonic disturbances on the dynamic processes and the evolution of impurities in the Sea of Azov in the presence of stationary currents

Investigation of the influence of cyclonic disturbances on the dynamic processes and the... A three-dimensional nonlinear mathematical model is used to study the dynamic processes under the action of cyclonic disturbances in the field of stationary wind in the Sea of Azov and the specific features of transformation of the impurities. The results of numerical calculations enable us to conclude that the maximum velocities of currents generated by a cyclone depend on the direction of its motion. It is shown that the cyclones moving westward generate currents with higher maximum velocities than the cyclones of other directions. It is also demonstrated that the motion of atmospheric disturbances leads to a significant enlargement of the area of propagation of pollutants as compared with the case of action solely of stationary currents. The influence of the velocities of stationary currents on the maximum current velocities caused by the passage of a cyclone is also analyzed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Investigation of the influence of cyclonic disturbances on the dynamic processes and the evolution of impurities in the Sea of Azov in the presence of stationary currents

Loading next page...
 
/lp/springer_journal/investigation-of-the-influence-of-cyclonic-disturbances-on-the-dynamic-kraj947OWs
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-009-9041-y
Publisher site
See Article on Publisher Site

Abstract

A three-dimensional nonlinear mathematical model is used to study the dynamic processes under the action of cyclonic disturbances in the field of stationary wind in the Sea of Azov and the specific features of transformation of the impurities. The results of numerical calculations enable us to conclude that the maximum velocities of currents generated by a cyclone depend on the direction of its motion. It is shown that the cyclones moving westward generate currents with higher maximum velocities than the cyclones of other directions. It is also demonstrated that the motion of atmospheric disturbances leads to a significant enlargement of the area of propagation of pollutants as compared with the case of action solely of stationary currents. The influence of the velocities of stationary currents on the maximum current velocities caused by the passage of a cyclone is also analyzed.

Journal

Physical OceanographySpringer Journals

Published: Oct 9, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off