Investigation of the impact of a wireless Fog Warning System with respect to road traffic on a highway

Investigation of the impact of a wireless Fog Warning System with respect to road traffic on a... Sudden visibility reductions on highways due to foggy weather conditions often lead to a drastic increase in car crash risks. Indeed, fog formation distorts drivers’ perception and judgment of inter-vehicular distances, vehicles’ speeds, and braking distances. In order to support drivers in dealing with the impact of fog, various on-board warning systems are being deployed today. Despite their added value, these systems are still in need of efficient solutions supporting smooth vehicle’sacceleration/ deceleration profiles. This is to avoid sudden braking (hence, higher car crash risks) incurred by sensor technologies restricted to line of sight measurements. To meet this goal, we advocate in this paper a Wireless Fog Warning System (WFWS) where cooperative awareness messages are disseminated and used for calculating acceleration/deceleration activities. Without loss of generality, we build on IEEE 802.11p WLAN as a basis technology. Using simulations on the open-source vehicular network simulation framework Veins, we demonstrate both the potential of such a system for increasing safety and smoothing traffic flow—as well as of computer simulation as a means of its evaluation. . . . . Keywords Total travel time Time to collision Dedicated short-range communication Cooperative awareness messages . . Vehicle to vehicle Vehicle to infrastructure Wireless http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Personal and Ubiquitous Computing Springer Journals

Investigation of the impact of a wireless Fog Warning System with respect to road traffic on a highway

Loading next page...
 
/lp/springer_journal/investigation-of-the-impact-of-a-wireless-fog-warning-system-with-pSXeUqe44m
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Computer Science; User Interfaces and Human Computer Interaction; Computer Science, general; Personal Computing; Mobile Computing
ISSN
1617-4909
eISSN
1617-4917
D.O.I.
10.1007/s00779-018-1151-4
Publisher site
See Article on Publisher Site

Abstract

Sudden visibility reductions on highways due to foggy weather conditions often lead to a drastic increase in car crash risks. Indeed, fog formation distorts drivers’ perception and judgment of inter-vehicular distances, vehicles’ speeds, and braking distances. In order to support drivers in dealing with the impact of fog, various on-board warning systems are being deployed today. Despite their added value, these systems are still in need of efficient solutions supporting smooth vehicle’sacceleration/ deceleration profiles. This is to avoid sudden braking (hence, higher car crash risks) incurred by sensor technologies restricted to line of sight measurements. To meet this goal, we advocate in this paper a Wireless Fog Warning System (WFWS) where cooperative awareness messages are disseminated and used for calculating acceleration/deceleration activities. Without loss of generality, we build on IEEE 802.11p WLAN as a basis technology. Using simulations on the open-source vehicular network simulation framework Veins, we demonstrate both the potential of such a system for increasing safety and smoothing traffic flow—as well as of computer simulation as a means of its evaluation. . . . . Keywords Total travel time Time to collision Dedicated short-range communication Cooperative awareness messages . . Vehicle to vehicle Vehicle to infrastructure Wireless

Journal

Personal and Ubiquitous ComputingSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off