Investigation of the flow around a circular cylinder under the influence of an electromagnetic force

Investigation of the flow around a circular cylinder under the influence of an electromagnetic force An investigation of the effect of the local electromagnetic body force on the flow behavior around a circular cylinder is conducted. The electromagnetic force is applied locally on the cylinder surface in the range of 70–130° from the stagnation point along the cylinder circumference in both clockwise and counterclockwise directions. The numerical results predict that the Lorentz force applied in the circumferential direction on the cylinder moves the separation point rearward, and reduces the drag. To validate the numerical results, an experiment is conducted with a circular cylinder of 5 cm diameter. The electrodes and permanent magnets are flush mounted on the cylinder in such a way that the Lorentz force is generated in the circumferential direction. Flow visualization with polystyrene particles and direct drag measurement using strain gages are made. The fluid used is natural sea water of electric conductivity of about 4 (Ω m)-1. Induction effect can be neglected in the present investigation due to the low flow speed and the Lorentz force is proportional to E×B where E is an applied electric field and B is a magnetic field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation of the flow around a circular cylinder under the influence of an electromagnetic force

Loading next page...
 
/lp/springer_journal/investigation-of-the-flow-around-a-circular-cylinder-under-the-J1GQtyRJFH
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050385
Publisher site
See Article on Publisher Site

Abstract

An investigation of the effect of the local electromagnetic body force on the flow behavior around a circular cylinder is conducted. The electromagnetic force is applied locally on the cylinder surface in the range of 70–130° from the stagnation point along the cylinder circumference in both clockwise and counterclockwise directions. The numerical results predict that the Lorentz force applied in the circumferential direction on the cylinder moves the separation point rearward, and reduces the drag. To validate the numerical results, an experiment is conducted with a circular cylinder of 5 cm diameter. The electrodes and permanent magnets are flush mounted on the cylinder in such a way that the Lorentz force is generated in the circumferential direction. Flow visualization with polystyrene particles and direct drag measurement using strain gages are made. The fluid used is natural sea water of electric conductivity of about 4 (Ω m)-1. Induction effect can be neglected in the present investigation due to the low flow speed and the Lorentz force is proportional to E×B where E is an applied electric field and B is a magnetic field.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 6, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off