Investigation of the dynamics of the interaction of metal particles with a Langmuir single layer upon an increase in the surface pressure

Investigation of the dynamics of the interaction of metal particles with a Langmuir single layer... X-ray studies of dipalmitoylphosphatidylcholine (DPPC) single layers on the surface of a liquid provide detailed information on the interaction of metal particles with a single layer upon an increase in the surface pressure up to the collapse. Two complementary X-ray methods are used: grazing incidence diffraction and the X-ray standing waves method. The experimental results obtained for a single layer formed on a colloidal solution of magnetite nanoparticles reveal that the increase in the surface pressure is accompanied by an increase in the concentration of nanoparticles near the surface. In a series of experiments where metal particles of submicron size are sputtered onto a DPPC single layer, a sharp decrease in the intensity of the fluorescence yield from metal atoms is observed while the single layer is compressed. These data suggest that metal particles deposited onto the surface of a single layer were extruded into the aqueous subphase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Investigation of the dynamics of the interaction of metal particles with a Langmuir single layer upon an increase in the surface pressure

Loading next page...
 
/lp/springer_journal/investigation-of-the-dynamics-of-the-interaction-of-metal-particles-YnV1W8xRhS
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Surfaces and Interfaces, Thin Films
ISSN
1027-4510
eISSN
1819-7094
D.O.I.
10.1134/S1027451017040103
Publisher site
See Article on Publisher Site

Abstract

X-ray studies of dipalmitoylphosphatidylcholine (DPPC) single layers on the surface of a liquid provide detailed information on the interaction of metal particles with a single layer upon an increase in the surface pressure up to the collapse. Two complementary X-ray methods are used: grazing incidence diffraction and the X-ray standing waves method. The experimental results obtained for a single layer formed on a colloidal solution of magnetite nanoparticles reveal that the increase in the surface pressure is accompanied by an increase in the concentration of nanoparticles near the surface. In a series of experiments where metal particles of submicron size are sputtered onto a DPPC single layer, a sharp decrease in the intensity of the fluorescence yield from metal atoms is observed while the single layer is compressed. These data suggest that metal particles deposited onto the surface of a single layer were extruded into the aqueous subphase.

Journal

Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off