Investigation of penetrative convection in stratified fluids through 3D-PTV

Investigation of penetrative convection in stratified fluids through 3D-PTV Testing existing theories of flow and transport in stably stratified fluids when “penetrative convection” occurs requires experimental methods capable of fully three-dimensional descriptions of both the Eulerian velocity field and Lagrangian particle trajectories. Boundary layer experiments utilizing a photogrammetric three-camera three-dimensional Particle Tracking Velocimetry (3D-PTV) technique were performed on a laboratory model which simulated the evolution of the mixing layer in a stably stratified fluid body by heating a tank filled with water from below. A combination of image- and object space-based information was employed to establish the spatio-temporal correspondences between particle positions at consecutive time steps. An appropriate calibration procedure for the stereoscopic system provides the intrinsic and extrinsic parameters of the stereoscopic system to be used for determining the correspondence of points in the object or world reference frame and in the image reference frame. The photogrammetric principles used by 3D-PTV are described. First, the fundamental mathematical model of the collinearity condition and its extensions are explained. Then, the epipolar line intersection method built upon multicamera correspondences (structure-from-stereo) is discussed as well as the procedure of reconstruction of particle trajectories in a single step by conjunctly establishing the spatial and temporal correspondences between particle images. Tests on simulated data were performed as well as experimental data in order to ensure the method’s operability and robustness. The reconstructed velocity fields are compared to other laboratory investigations and field data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation of penetrative convection in stratified fluids through 3D-PTV

Loading next page...
 
/lp/springer_journal/investigation-of-penetrative-convection-in-stratified-fluids-through-Be1OzylB35
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by The Author(s)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0716-4
Publisher site
See Article on Publisher Site

Abstract

Testing existing theories of flow and transport in stably stratified fluids when “penetrative convection” occurs requires experimental methods capable of fully three-dimensional descriptions of both the Eulerian velocity field and Lagrangian particle trajectories. Boundary layer experiments utilizing a photogrammetric three-camera three-dimensional Particle Tracking Velocimetry (3D-PTV) technique were performed on a laboratory model which simulated the evolution of the mixing layer in a stably stratified fluid body by heating a tank filled with water from below. A combination of image- and object space-based information was employed to establish the spatio-temporal correspondences between particle positions at consecutive time steps. An appropriate calibration procedure for the stereoscopic system provides the intrinsic and extrinsic parameters of the stereoscopic system to be used for determining the correspondence of points in the object or world reference frame and in the image reference frame. The photogrammetric principles used by 3D-PTV are described. First, the fundamental mathematical model of the collinearity condition and its extensions are explained. Then, the epipolar line intersection method built upon multicamera correspondences (structure-from-stereo) is discussed as well as the procedure of reconstruction of particle trajectories in a single step by conjunctly establishing the spatial and temporal correspondences between particle images. Tests on simulated data were performed as well as experimental data in order to ensure the method’s operability and robustness. The reconstructed velocity fields are compared to other laboratory investigations and field data.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 31, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off